alert icon Coronavirus

Now scheduling COVID-19 vaccine appointments for ages 12+
Schedule a vaccine appointment
COVID-19 vaccine FAQs

Going to a Cleveland Clinic location?
New visitation hours
Masks are required for patients and visitors (even if you're vaccinated)

Robotic Device May Make Walking Easier for Multiple Sclerosis Patients

At age 56, Kathy Miska is fighting the devastating impact of multiple sclerosis (MS) on her ability to walk. A robotic device that attaches to her body during physical therapy (PT) – called an exoskeleton – is helping her to do just that.

Diagnosed 20 years ago with MS, the autoimmune disease that can negatively impact the central nervous system, Kathy has seen her symptoms worsen over time, especially in recent years.

Kathy is one of five MS patients at Cleveland Clinic’s Mellen Center for Multiple Sclerosis to participate in a research study assessing the effectiveness of the EksoGT exoskeleton in MS rehabilitation.

“My walking speed has increased, my endurance has improved, my gait is more normal and I get intermittent periods of my leg getting signals from my brain,” says Kathy.

Kathy with her family. She was diagnosed with MS 20 years ago, and has seen her symptoms worsen over time. (Courtesy: Kathy Miska)
Kathy with her family. She was diagnosed with MS 20 years ago, and has seen her symptoms worsen over time. (Courtesy: Kathy Miska)

While the device has Food and Drug Administration (FDA) approval for use in rehabilitation programs for patients with spinal cord injury and stroke, this is one of the first pilot studies to determine its potential efficacy for MS patients. It is funded by a generous donor and a Cleveland Clinic Caregiver Catalyst Grant.

“The idea is to use the exoskeleton as part of PT to hopefully achieve better results, particularly when the patients can't do much walking by themselves and can’t (fully) exercise their legs,” says Francois Bethoux, MD, Chair of Cleveland Clinic’s Department of Physical Medicine and Rehabilitation and principal investigator of the study. “Just like with muscles, with the nervous system you ‘use it or lose it.’ The goal is that the patient will find it easier to walk even when they're not using the device.”

Here’s how the exoskeleton works: A trained physical therapist straps the bulky yet adjustable device onto the patient’s body. An adjustable metal brace supports the legs, feet and torso. Guided by the physical therapist, the exoskeleton is programmed to manipulate the patient’s legs and waist as they stand up, walk on a level surface and sit down. Battery-powered motors drive the knee and hip joints, with the patient gaining support for balance and body positioning through use of a cane, walker or crutches.

“I feel like I have really made progress,” says Kathy, who recently completed the study’s 24, hour-long training sessions spread over an eight-week period. “My posture looks better and my walking has improved. Hopefully, this will get me stronger. It's encouraging.”

Guided by a physical therapist, the exoskeleton manipulates the patients legs and waist. (Courtesy: Cleveland Clinic)
Guided by a physical therapist, the exoskeleton manipulates the patient's legs and waist. (Courtesy: Cleveland Clinic)

One of Kathy’s physical therapists, Matthew Sutliff, can attest to her improvement.

“It seems to be really making a difference in Kathy’s gait training,” he explains. “She has a lot of weakness in her right leg, but her left leg is a bit stronger. So we programmed the device to give her a fair amount of support for her right leg to teach the proper step pattern. As we continued, we slowly reduced assistance for the right leg, requiring her muscles to perform more of the work.”

As Matthew adds, the exoskeleton is not intended to do the work for the patient, but to stimulate “nerve memory” so the muscles will ultimately take over. “The brain is constantly adapting to what we do. By continually repeating something in a certain format, the hope is to “rewire neural pathways in the brain” to walk better, more naturally and safely.”

Findings from the study, which is nearing completion, are expected to be published in 2020.

“Encouraging findings would support the design of a larger clinical trial of this device for gait training in people with MS,” adds Dr. Bethoux.

Related Institutes: Neurological Institute, Lerner Research Institute
Patient Stories

Patient Stories

Eric and Brienne Alves hold their son, Noah.

Couple Never Gives Up During Struggle with Male Infertility

Jun 18, 2021

“When you’re told there’s a possibility that you don’t have sperm, there’s a possibility that you won’t be able to have a child, you sort of feel shame. I think it’s important for men to know you’re not alone and that there are doctors like Dr. Parekh who can help. Never give up!”

Read Story
The Brooks family following Caleb's intestinal transplant. (Coutesy: Riley Nicole Photography)

Attacked by a Bull, Father of Two Undergoes Intestinal Transplant

Jun 18, 2021

“I have such gratitude for all the people that have supported me, and to God for putting them in our life. It’s incredible."
Read Story
Never give up: Nepalese man embarks on a lifesaving journey to treat bile duct cancer.

Never Give Up: Nepalese Man Embarks on a Lifesaving Journey To Treat Bile Duct Cancer

Jun 9, 2021

“I came across the globe for care at the best hospital in the world. I followed my life motto to never give up and so did Dr. Kwon.”
Read Story
Back to Top