How is a spinal cord injury treated?

A spinal cord injury requires immediate treatment to avoid long-term effects. In some cases, surgery might be recommended to stabilize the bones of the spine, but surgery does not necessarily reduce or repair nervous system injury. Bed rest might be needed in order for the spine to heal. After acute spinal cord injuries occur, physical therapy, occupational therapy, and other rehabilitation interventions sometimes are required. Currently, there is no cure for spinal cord injury; however, researchers continue to work on advances, many of which have resulted in a decrease in damage at the time of the injury.

Neural prostheses

One approach for treating patients with spinal cord injuries is to compensate for lost function by using neural prostheses to bypass the areas of damage. This is done by connecting electrical and mechanical devices with the nervous system to compensate for lost motor and sensory functions. For example, neural prostheses for deafness, known as cochlear implants, are now in widespread use and have been very effective in improving hearing. The first neural prostheses for patients with spinal cord injuries are now being tested.

The United States Food and Drug Administration (FDA) approved one of these devices, a prosthesis that allows basic hand control. Patients use their shoulder muscles to control the device, and with training, can perform activities of daily life that they would otherwise be unable to perform, such as using silverware, pouring a drink, answering a telephone, and writing a note.

Neural prostheses are complex and contain many intricate components, such as implantable stimulators, electrodes, leads and connectors, sensors, and programming systems. There are many technical considerations in selecting each component. The electronic components must be as small as possible. Biocompatibility between electrodes and body tissue is also necessary to prevent injury to the patient and damage to the device. Neural prostheses also must be evaluated for usefulness and long-term safety.

Further research and an improved and increased understanding of brain circuits may eventually lead to prostheses that can provide sensory information to the brain. This would improve both the safety of the devices and the patient's ability to perform certain tasks. Devices now being developed may eventually enable people with spinal cord injuries to stand unassisted and perform other actions using signals from the brain--instead of muscles--to control movement. Ultimately, researchers may be able to harness reflexes or the innate pattern-generating abilities of the spinal cord's central pattern generators to help people with spinal cord injuries walk.

With the current wave of new technology, it is easy to forget just how far medical science has come in treating spinal cord injuries. As recently as 50 years ago, most patients died within a few weeks from a spinal cord injury due to complications related to infections or bodily dysfunctions. Nowadays, not only do spinal cord injury patients survive, many thrive. Once the injury has been stabilized, physical therapy and advances in assistive devices allow patients to work, travel, compete in sports and raise families. Nevertheless, while the years ahead offer promise for people with spinal cord injuries, today's patients face many challenges in their everyday lives.

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy