Challenges in the Medical Management of Patients with Aortic Stenosis

November 4, 2014
Theresa Cary, RN, MSN, ACNS-BC, CCRN, CHFN
Judy Pearce, RN, BSN, CCRN
The authors have no conflicts of interest to disclose.
Objectives

• Describe the pathophysiology of AS
• Identify clinical manifestations of AS
• Discuss medical and nursing management of nonsurgical patients
Introduction

• Aortic stenosis (AS)
 - Narrowing of aortic valve orifice
 - → Obstruction of left ventricular outflow
• Calcific aortic valve disease (CAVD)
 - Affects > 4% North Americans and Europeans
 - Increasing in prevalence
Normal Valve Function

• Essential to cardiovascular and cardiopulmonary physiology
• Heart valves ensure forward progression of blood through the heart
• Open & close in response to pressure changes during systole and diastole
Normal Heart & Valve Function

- Open tricuspid & mitral valves in early/mid diastole
- Closed tricuspid & mitral valves in early systole
- Open pulmonic and aortic valves in mid systole
- Closed pulmonic and aortic valves in late systole

© Cleveland Clinic
Systolic Contraction & Twist
Aortic Valve A & P

- 3 cup-shaped leaflets
 - Top edge (free margin)
 - Base
- Annulus connects aortic valve to the fibrous skeleton of the heart
Fibrous Skeleton

- Dense fibrous connective tissue
Aortic Valve Anatomy & Physiology

- Commissures join leaflets edge to edge
- Penetrate aortic wall
- Absorb stress of systole and diastole

©Cleveland Clinic
Aortic Valve A & P

- Sinus of Valsalva
- Aortic wall bulges outward
- Creates space behind leaflets
3 Sinuses of Valsalva

- Bulge creates space
 - Prevent obstruction to coronary arteries during systole
 - Provide space for blood to pool during diastole for coronary artery filling

©Cleveland Clinic
Sinus of Valsalva

- Blood flow outlet narrows
- Blood forced between the Sinus of Valsalva and open cusps, filling coronary arteries
- Backward curling
- Free margins meet
Three Sinuses of Valsalva

- Late systole, backward blood flow fills the cusps outward in
- End systole, cusp’s free margins abut ensuring perfect valve closure
Layers of Leaflet

- **Fibrosa**
- **Ventricularis**
- **Spongiosa**
Aortic valve leaflet A&P

- **Fibrosa** – collagen: distributes pressure load

- **Spongiosa** - glycosaminoglycans, proteoglycans: cushion, minimize friction

- **Ventricularis** - elastic fibers: maintains shape
Aortic Valve Leaflet A&P

- **Valvular interstitial cells (VICS):**
 - Maintain structure & function
 - Inhibit angiogenesis
 - Repair cellular damage

- **Valvular extracellular matrix (VECM):**
 - Collagen fibers
 - Elastin fibers
 - Glycosaminoglycans, proteoglycans
Aortic Stenosis

• Progression from sclerosis to stenosis
 - Sclerosis – mild valve thickening and/or calcification without obstruction
 - Stenosis – increasing obstruction of blood flow and progression of:
 • Leaflet thickening
 • Calcium nodule formation
 • Angiogenesis
 – 10% advance from sclerosis to stenosis
Causes of Aortic Stenosis

- Valve calcification of:
 - Tri-leaflet AV
 - Most common cause of AS
Bicuspid Aortic Valve

• 1-2% of adults More likely to develop AS
• Stenosis occurs earlier
 - 50s to 60s bicuspid
 - 70s to 80s tricuspid
Post-inflammatory Causes of Aortic Stenosis

• Rheumatic heart disease
 – Untreated pharyngeal infections
 – Rare in developed countries
 – Most common cause world-wide

• Prior exposure to radiation
 - 15-20 yrs post exposure
Aortic Valve Calcification

• CAVD is an active cellular biological process
• Not an inevitable consequence of aging
• VICS no longer repair injuries to VECM
 – Alterations of cells within the layers of the AV
• Exact cause is still unclear
Pathophysiology of AS

• Chronic resistance to LV ejection → concentric LV hypertrophy and myocardial fibrosis

• Stronger LV systolic contraction needed to
 - Maintain adequate stroke volume and cardiac output
 - EF is maintained
Concentric vs. Eccentric
Consequences of Concentric Hypertrophy

- Decreased
 - Myocardial elasticity
 - Coronary blood flow
- Increased
 - Myocardial workload
 - Myocardial oxygen consumption
 - Mortality
Consequences of Concentric Hypertrophy

• Increased
 - Diastolic pressure
 - Delayed LV untwisting (relaxation)

• Optimal stroke volume and cardiac output increasingly dependent upon a forceful atrial contraction (atrial kick)
Consequences of Concentric Hypertrophy

• Mitral valve regurgitation
 - Increased LV pressure puts a strain on the mitral valve
 - Increase pressure in the lungs
 • Pulmonary venous hypertension
 • Reactive vasoconstriction of the pulmonary vasculature
2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease

• Stages A-D
Grading of AS

• Aortic jet velocity
• Mean aortic valve pressure gradient
• Aortic valve area
Pressure Gradient

- Peak LV and aortic pressure tracings
- LV pressure higher than aortic pressure
- Grading table uses mean pressure gradient

Wikipedia, Aortic Valve Stenosis
Jet Velocity

- Low velocity (slower) blood flow in the LV outflow tract speeds up as it moves through the narrow, stiffened AV orifice.

Wickimedia Commons, accessed Oct 2014
Clinical Manifestations of AS

• Initial manifestations
 - Decreased exercise tolerance
 • Dyspnea on exertion
 • Exertional dizziness
 • Lightheadedness with exertion

• Late manifestations
 - Angina
 - Syncope
 - Heart failure
Clinical Manifestations of AS

- Jugular vein distension
- Pulmonary rales
- Carotid pulse abnormalities
- Systolic ejection murmur
Carotid Pulse

• *Gentle, careful* palpation
• Pulsus tardus
 - Slowly increasing carotid upstroke
 - Takes longer to reach peak pressure
• Weaker pulse amplitude
Carotid Pulse

• Indication of:
 - Resistance to AV opening
 - Subsequent delay in LV ejection
 - Decreasing volume

• Indications may be masked in the elderly d/t age related changes in arterial compliance and stiffness
Systolic Ejection Murmur

• Crescendo-decrecendo
 - 2nd intercostal space right sternal boarder with bell of stethoscope
• May radiate to carotids
• In elderly, may radiate to the apex
Medical Management of Asymptomatic Patients

- Decrease cardiovascular risk factors
- Monitoring and education
- Medication therapy
Decrease Cardiovascular Risk Factors

- HTN
- Diabetes
- Smoking tobacco
- High cholesterol
- Overweight
- Lack of exercise
Monitoring and Education

- Monitoring
 - F/U visits, echocardiograms

- Education
 - Disease progression
 - Change in exercise tolerance
 - Physical activity
Medication Therapy

• There is currently no known medical therapy to
 – Prevent CAVD
 – Delay the progression of AS
Medication Therapy

• Prophylactic antibiotics
 – Rheumatic AS only

• Treat HTN according to standard GDMT
 – B-blockers historically considered unsafe

• Statins??
Guideline Directed Medical Therapy JNC: 8

- ACE Inhibitors (or ARBs)
 - Previously contraindicated
- Beta blockers
- Calcium channel blockers
- Thiazide-type diuretics
Management of Symptomatic Patients

• Surgical options
 - Aortic Valve Replacement (AVR)
 - Transaortic valve replacement (TAVR)
 - Balloon Aortic Valvuloplasty (BAV)
Management of Symptomatic Patients

• Surgical repair is the **only** effective treatment for symptomatic AS
• Mean life expectancy 2-3 years without surgical intervention
• Treat co-morbidities
• Treat symptoms
• Maintain optimal hemodynamics
Management of Symptomatic Patients

- Angina
- Syncope
- Pulmonary congestion
- Acute pulmonary edema
Case Study

• 70yo female w/severe AS and CAD
• NPO after MN CABG/AVR next afternoon
• Developed chest pain at rest
• No PRN order for NTG SL...
 – What do you need to know before proceeding?
 – What is your intervention?
Management of Symptomatic Patients

- Angina
 - Bedrest
 - Oxygen therapy
 - Vasodilators (nitrates)
 - Beta blockers

- Syncope
 - Treat arrhythmia
Case Study, continued

• B/P 108/65, usual B/P 130/70
 – Chest pain unrelieved w/rest and O₂
• IV Nitroglycerin 10mcg/min
 – B/P ↓ 90/60
 – Chest pain unrelieved
• Normal Saline 150cc/hr
• Transferred to ICU
Management of Symptomatic Patients

- **Pulmonary congestion**
 - Digitalis
 - Diuretics
 - ACE Inhibitors or ARB

- **Acute pulmonary edema**
 - Vasodilator therapy
 - Intra-aortic balloon pump (IABP)
Nursing Considerations

• Thorough grasp of the tenuous balance between the narrow range of preload & afterload necessary to maintain forward blood flow & adequate CO

• Extremely sensitive to changes in preload
 – High preload → pulmonary congestion
 – Low preload → low output failure

• Dependent on a strong atrial contraction
Nursing Considerations

• Consider hemodynamics as they relate to signs & symptoms of AS
• Consider hemodynamic effects of medications, treatments, plan of care
• Avoid systemic hypotension
 – Myocardial ischemia
 – Reduced contractility
 – Worsening hypotension
 – Worsening coronary perfusion
Goals in Daily Plan of Care

• Balance rest & activity
 – Maintain HR, B/P, temperature and fluid volume status
• Monitor for indicators of decompensation
 – Hypoxia, arrhythmias, B/P changes, SOB, chest pain, prolonged NPO status
• Identify decompensation *early* to prevent deterioration in clinical status
Patient Education

• Asymptomatic symptom recognition
 – Initial symptoms
 • ↓ exercise tolerance d/t exertional dyspnea or fatigue
 • exertional dizziness
 • exertional lightheadedness
 – Advanced symptoms
 • angina, syncope, HF
Patient Education

• Symptomatic symptom recognition
 – worsening signs and symptoms with prompt reporting
 – balance rest/activity to avoid symptoms

• Impact of medication adherence on cardiac function
Patient Education

• Treatment is improved when patients are educated and involved in
 – Daily weights
 – Signs of decompensation
 – When to call the physician or LIP
 – Changes in elevation with travel
Conclusion

• Symptomatic AS cannot be corrected without surgery
• Medical management of patients with AS, particularly severe symptomatic AS, is challenging
• Nurses must be astute about the tenuous hemodynamic balance of patients with severe AS
Cleveland Clinic

Every life deserves world class care.