Multisystem Problems

- Sepsis \rightarrow Multiple Organ Dysfunction Syndrome (MODS)
- Multisystem Trauma
- Toxic Ingestions and Exposure

Definitions

- **Sepsis**: Systemic inflammatory response to infection
- **Bacteremia**: Presence of viable bacteria in blood
- **Systemic Inflammatory Response Syndrome (SIRS)**: Systemic response to a chemical insult (infection, pancreatitis, ischemia, trauma, or hemorrhagic shock)

Multisystem Problems

- Over 750,000 cases each year in USA
- Mortality rate approximately 25%
- Leading cause of death in non-cardiac ICU’s
- Systemic response to infection
Sepsis: presence of infection with systemic manifestations of infection
Diagnostic criteria: fever (>38.3°C) or hypothermia (<36°C), HR > 90 bpm, tachypnea, altered mental status, edema, hypergycemia

Severe Sepsis: sepsis associated with organ dysfunction, hypoperfusion or hypotension

Septic Shock:
- shock resulting from massive vasodilation caused by mediator release of the inflammatory process in response to overwhelming infection
- sepsis with hypotension despite adequate fluid resuscitation combined with perfusion abnormalities

Multiple Organ Dysfunction Syndrome (MODS): presence of altered organ function in an acutely ill patient such that homeostasis cannot be maintained without intervention

Risk Factors
- Extremes of age
- Nutritional state (obese, malnourished)
- Malignancy
- Splenectomy
- Immunosuppressive therapies (corticosteroids, antibiotics)
- Chronic illness (DM, liver disease, HF, CAD, RF)

Sources of Infection/Sepsis
- Lung (gastric aspiration)
- GI tract (NPO, GI ischemia → translocation of bacteria)
- GU system
- Wounds, multiple trauma, burns
- Invasive lines/procedures
- Ischemic/necrotic tissue
Microorganisms

- Gram negative: E. coli, shigella, salmonella, klebsiella, serratia, pseudomonas, enterobacter
- Gram positive: streptococcus, C. difficile, S. aureus
- Viruses, fungi, protozoa

Clinical Presentation: Early, Hyperdynamic (looks like infection)

- Fever
- Tachypnea, hypoxemia (respiratory alkalosis)
- Tachycardia (HR > 90 bpm)
- Hypotension (SBP < 90 mmHg)
- Warm, dry skin, ↓ SVR
 - ↑ CI, ↑ CO
 - SVO2 > 70%
 - ↓ CVP, ↓ PAOP, ↓ PAP
 - Irritable, confused
 - Hyperglycemia, ↓ platelets, ↑ PT/aPTT
Clinical Presentation: Late, Hypodynamic (looks like shock)

- Tachycardia, hypotension
- ↓↑ RR
- Cool, pale skin, SVR variable
- Metabolic acidosis
- Anuria
- Hypothermia
- ↓ CO/CI, ↓ SVO2
- ↑ PT/PTT, ↑ creatinine/BUN, hypoglycemia
- ↓ platelets, ↓ protein C,
 Lethargy or coma

Management

- Airway, oxygen
- Maintain tissue perfusion (volume with crystalloids) to keep CVP 8-12 mm Hg, MAP > 65 mm Hg, urine output > 0.5 mL/kg/hr
- Vasopressors (norepinephrine, epinephrine, dopamine vasopressin)
- Identify (culture) and treat source of infection with IV antibiotics within 1 hour of recognition of severe sepsis
- Monitor arterial lactate levels

Which of the following mechanisms contributes to hypotension in sepsis?

- A. Elevated afterload
- B. Increased cardiac contractility
- C. Peripheral vasodilation
- D. Decreased vascular permeability

Management

- Maximize oxygen delivery (mechanical ventilation)
- Minimize oxygen consumption (sedation, NMB)
- Inotropes (dobutamine)
- Corticosteroids (hydrocortisone)
- Provide nutrition
- Renal replacement therapy
- Glucose control
- DVT and stress ulcer prophylaxis
Which of the following mechanisms contributes to hypotension in sepsis?

• A. Elevated afterload
• B. Increased cardiac contractility
• C. Peripheral vasodilation
• D. Decreased vascular permeability

Multiple Organ Dysfunction Syndrome (MODS)

• Clinical events (infection, inflammation, hypoperfusion and ↓ oxygen delivery) lead to cellular events
• Primary MODS: direct organ injury
• Secondary MODS: Consequence of infection or trauma that leads to systemic inflammatory response and organ dysfunction elsewhere

Etiology

• Trauma, burns, crush injuries
• Abscesses, ischemic or necrotic tissue
• Infection
• Shock, cardiac arrest

Clinical Presentation

• ARDS
• Myocardial depression
• Abdominal distension, ileus, diarrhea, intolerance to tube feedings
• GI bleeding, hepatomegaly, ↑ liver enzymes and ammonia
• Acalculus cholecystitis
• DIC (↑ FSP, D-dimer > 2 mg/L)
Clinical Presentation

• ATN, electrolyte imbalances, acid-base imbalances
• Restless, no interest in surroundings
• Insomnia, confusion, coma
• ↑ PT/PTT, ↑ or ↓ WBC
• Bleeding, ecchymosis

Management

• Prevention!
• Early identification
• Eliminate source of infection
• Maintain tissue perfusion/oxygenation
• Decrease oxygen consumption
• Nutritional support (tube feedings)

Multisystem Trauma

• Injury is leading cause of death in people from age 1 to 37 years
• 4th leading cause of death for all ages, following heart disease, cancer, and stroke
Mechanisms of Injury

• Blunt/nonpenetrating (MVC, falls)

• Penetrating (GSW, stab wounds, impalement, avulsion and degloving)

Physiological Response

• Stress response
 ↑ HR, ↑BP, vasoconstriction
 ↑ capillary permeability, hypovolemia

• Coagulopathy

• Decreased tissue perfusion with increased oxygen consumption

• Metabolic response: hyperglycemia, catabolism
Assessment

- Primary survey (A-B-C-D)
 - Performed in 1-2 minutes to identify life-threatening injuries
- History of the incident
- Secondary survey (E-F-G-H-I)

Primary Survey

- Airway
 - Open and patent
 - Maintain cervical spine immobilization
- Breathing
 - Presence and effectiveness
 - Decreased or absent breath sounds
 - Color
 - Presence of external bleeding

Impaired Airway

- Shallow, noisy breathing
- Cyanosis
- Inability to speak
- Trauma to face, neck, mouth
- Drooling
- Nasal flaring
- ↓ LOC

Primary Survey

- Circulation
 - Presence and quality of major pulses
 - LOC
 - Bleeding
 - Hypotension is a late sign!
- Disability
 - Gross neurological status - LOC
 - Pupil size, equality, reactivity to light
Management

• Open airway by chin lift or jaw thrust
• Suction
• Intubation
• Cricothyrotomy

Impaired Breathing

• RR < 10 or > 29 breaths/min
• Absent, unequal breath sounds
• Blunt chest injury/ open chest wound
• Pallor, cyanosis
• Labored breathing
• Tracheal shift
• Paradoxic chest wall motion
Tension Pneumothorax
- Distended neck veins
- Hyperresonance on affected side
- Absent/decreased breath sounds on the affected side
- Tracheal shift toward unaffected side
- Hypotension
- Tachypnea

Hemothorax
- Flat neck veins
- Dullness to percussion
- Absent breath sounds on the affected side
- Tracheal shift toward unaffected side
- Hypotension

Cardiac Tamponade
- Blood/ fluid in pericardial space compromises cardiac filling and cardiac output
- ↑ HR, ↑ CVP, ↑ PAOP
- Beck’s triad: ↓ BP, distended neck veins, muffled heart sounds
- ↓ CO, ↓ CI, ↓ SVO2
Management

• Oxygen
• Intubation
• Needle thoracostomy
• Chest tube
• HOB elevation 30 to 45 degrees

Impaired Circulation (Hypovolemia)

• Weak, thready pulse
• Cool, damp skin
• BP < 90 mm Hg
• Bleeding
• ↓ LOC
• Delayed capillary refill
• Oliguria

Management

• Manual pressure over bleeding site
• Fluid resuscitation (blood or crystalloids)
• Warm IV fluids to prevent hypothermia
• Short, large bore peripheral IV’s or trauma catheters
• Administer volume rapidly (volume infuser, pressure bag)

Impaired Neurological Status

• Glasgow Coma Scale < 11
• Agitation
• Motor deficits
• Primary injury: direct injury to brain tissue
• Secondary injury: occurs over hours or days as a result of biochemical changes, ↑ ICP, seizures, hypotension, hypoxia, hypercapnia, hyperthermia, and/or sodium imbalance
Management

- Maintain and protect airway, breathing, and circulation
- Intubation
- Control for increased ICP (head in neutral position, normothermia, volume resuscitation, adequate oxygenation)
- Protect patient from self harm

History of the Incident

- "Index of suspicion"
- Accident data base
 Type of accident (MVC, driver, passenger)
 Events (type of weapon, ejection, speed of vehicle)
 Blunt or penetrating
 Extrication (how long?)

History of the Incident

- Health history
 Smoking, chest pain, surgeries
 A: allergies
 M: medications
 P: past illness
 L: last meal (type, quantity, time)
 E: events preceding the injury
- Physical exam

Secondary Survey

- Expose
 Remove patient's clothing to perform a thorough physical exam
 Maintain spine alignment
 Keep patient warm
Secondary Survey

• Full set of vital signs/Five interventions/ Facilitate family presence
 HR, RR, BP, temperature
 Five interventions: Foley, NG tube, pulse oximetry, cardiac monitor, blood and urine for lab studies
 Update family, facilitate visitation

Secondary Survey

• Give comfort measures
 • Pain relief
• History/head to toe assessment
 • Mechanism of injury
 • Injuries sustained
• Vital signs
 • Treatment
• Inspect posterior surfaces

Vital Signs

• Heart rate (HR)
 ↑ HR following trauma
 ↓ HR/irregular HR in blunt chest trauma
• Respiratory rate (RR)
 ↑ RR following trauma
 Absence of ↑ RR suggests CNS injury or substance abuse

Vital Signs

• Blood pressure
 Ideal is systolic > 90 mmHg
 Older adults less able to tolerate volume deficits
 ETOH intoxication may lead to ↑BP or ↓BP
Inspection

• Abrasions, ecchymoses, swelling, skin lacerations may indicate deeper injuries
• Otorrhea (CSF from ears), rhinorrhea (CSF from nose), and blood from nose or ears may indicate basilar skull fracture
• Blood at urinary meatus may indicate lower urinary tract injury or pelvic fracture
• Protruding bone fragments or viscera
• Deformity of extremities
• Entry or exit wounds

Auscultation

• Heart and lung sounds
• GI tract for hypoactivity or hyperactivity

Palpation

• Skull depression
• Facial deformity
• Deformity of thorax; subcutaneous emphysema
• Abdominal guarding
• Deformities/tenderness of extremities and spine
• Absence of peripheral pulses

Diagnostic Tests

• CBC, blood type and crossmatch
• Serum electrolytes, BUN, creatinine, coagulation studies, lactate
• Arterial blood gases
• Urine and blood toxicology
• Urinalysis
Diagnostic Tests

- Ultrasound of four abdominal compartments to detect abdominal injury and cardiac tamponade
- X-rays (chest, spine, extremities)
- CT scan
- 12 lead ECG
- Echocardiography
- Angiography
- Diagnostic peritoneal lavage

Complications

- Hypothermia
- Infection
- Altered tissue perfusion from DVT or emboli
- Catabolism
- Pain
- Post-traumatic stress

Toxic Ingestions and Exposure

- Accidental or intentional overdose
- Accidental overdose of illegal drugs
- Ingestion/absorption of a poison

Pathophysiology

- Dependent on:
 - Drug ingested
 - Amount ingested
 - Time from ingestion to treatment
 - Preexisting condition of patient
Physiologic Response

- Local toxicity (effects occur at site of first contact)
- Systemic toxicity (effects occur after absorption and distribution of substance)
- CNS involved most frequently followed by CV, blood, liver, kidney, lung, and skin

Etiology

- Cleaning substances most frequent accidental exposure
- Analgesics have largest number of deaths
- Recreational drug use dependent on the community. Most common: cocaine, heroin, methamphetamine, inhalants
- Designer drugs (created): analogues of phenylethylamine, fentanyl, meperidine

Management - History

- Name of poison
- Route and amount of exposure
- Current symptoms
- Age of victim
- Time and length of exposure
- General health history

Management: Stabilization

- Airway, oxygenation, ventilation
- Cardiac monitor
- IV access
- Blood, urine, gastric contents for toxicology screening
- Serum electrolytes, coagulation studies, ABG’s, chest x-ray, 12 lead ECG, pregnancy test
Prevent Absorption

- Emesis – rarely used in hospital setting
- Gastric lavage
- Adsorbent therapy
- Bowel irrigation

Gastric Lavage

- Use if patient arrives within 1 hr of ingestion
- Intubate first if patient has ↓ LOC and diminished gag reflex
- Contraindications: caustics ingested, seizures, GI bleeding
- Ewald tube (32-40 French)
- Left side-lying position
- 150-200 mL warm tap water (up to total of 5-10 liters) instilled and aspirated

Adsorbent Therapy

- Activated charcoal (1g/Kg) after gastric lavage
- Adsorbing drugs adhere to surface of activated charcoal (adhesion of liquid or gas to the surface of a solid) decreasing absorption of drug
- Effective with theophylline, Tegretol, and phenobarbital

Bowel Irrigation

- Used in large ingestions not adsorbed with activated charcoal; “body packers” and “body stuffers”
- GoLYTELY 1-2 liters/hr for 4-6 hrs or until patient having clear stools
Facilitate Drug Removal

- IV fluids
- Loop or osmotic diuretics
- Urinary alkalinization (sodium bicarb for ASA and tricyclic antidepressants)
- Hemodialysis (lithium, amphetamines, ethylene glycol)

Management

- Monitor hepatic function
- Maintain renal function
- IV fluids
- Monitor for myoglobinuria

A patient has ingested 50 tablets of acetaminophen. 48 hours after ingestion he is showing signs of hepatic encepha
lopathy. What physiologic process contributes to the patient’s progressive response to this toxic ingestion?

A. Clearance
B. Absorption
C. Distribution
D. Adsorption
A patient has ingested 50 tablets of acetaminophen. 48 hours after ingestion he is showing signs of hepatic encephalopathy. What physiologic process contributes to the patient’s progressive response to this toxic ingestion?

A. Clearance
B. Absorption
C. Distribution
D. Adsorption