Pacemakers & Implantable Cardiac Defibrillators

The Basics for Bedside Nursing

Karen Donatello, RN, RCIS, CCDS
Objectives:

- Identify the operational characteristics of implantable Pacemaker, ICD, and CRT systems
- Demonstrate an understanding of how the presence of implantable devices impact patient care
Pacemakers & Implantable Cardiac Defibrillators

A Quick Review
The Electrical System of the Heart

- Sinoatrial (SA) Node
- Anterior Internodal Tract
- Middle Internodal Tract
- Posterior Internodal Tract
- Atrioventricular (AV) Node
- Bachmann's Bundle
- Left Bundle Branch
- Conduction Pathways
- Right Bundle Branch
Common Conduction Abnormalities

- Bradycardia
 - To slow
- Tachycardia
 - To fast
- Dys-synchrony
 - Unequal contraction

http://www.emedu.org/ecg/lbba.htm
Conduction Abnormalities Cause

- Syncope or pre-syncope
- Dizziness
- Congestive heart failure
- Mental confusion
- Palpitations
- Shortness of breath
- Exercise intolerance
Pacemakers & Implantable Cardiac Defibrillators

What’s the Same & What’s Different?
Implantable Devices Treat

- Conduction System Abnormalities
 - Bradycardia
 - Tachycardia
 - Dys-synchrony
Pacemakers

- Support the heart rate
 - make a heart beat
- Sense
 - see a native heart beat
- Provide physiologic heart rates
- Provide diagnostic information

ICDs

- Everything a Pacemaker does plus.....
- Treat life threatening arrhythmias
 - Pacing
 - Shock
What exactly is Cardiac Re-synchronization?
Ventricular Dyssynchrony

- Delayed electrical conduction results in late contraction of the left ventricle
Re-synchronization

- **Goal**
 - Simultaneous stimulation of both ventricles
 - Synchronized contraction
Benefits of a CRT Device

- Functions the same as a Pacemaker / ICD does plus...
- Optimization of hemodynamic performance
 - Improve contraction pattern
 - Reduce paradoxical septal motion
 - Improve LV regional wall motion
 - Improve Left Ventricular Ejection Fraction
- Symptom improvement
Pacemakers & Implantable Cardiac Defibrillators

Components
Power Source

- Housed inside the device or “can”
 - Battery
 - Circuitry
- Hermetically sealed
 - Elective replacement means a brand new can
Leads

- Attach to the “can”
 - Deliver energy to the heart
 - See or sense native heart beats
- Epicardial
- Transvenous
Transvenous lead insertion sites

- Internal/external jugular veins
 - Used when access is limited

- Subclavian/Cephalic veins
 - Most common for implantable devices

- Brachial/Femoral veins
 - Usually for temporary wires
How many wires?

- Single
- Dual
- Cardiac Re-Synchronization
 - CRT
A Closer Look.....
Pacemakers & Implantable Cardiac Defibrillators

Terminology

- Asynchronous
- DDD
- VVI
- High Energy Shock
- Stimulation
- Lower Rate Limit
- Detect Rate
- Capture
- Sensing
- Anti-Tachycardia Pacing
- Threshold
- Magnet Operation
- Magnet Operation
NBG code: Language of devices

<table>
<thead>
<tr>
<th>1st Letter</th>
<th>2nd Letter</th>
<th>3rd Letter</th>
<th>4th Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber(s) Paced</td>
<td>Chamber(s) Sensed</td>
<td>Response to Sensing</td>
<td>Rate Response</td>
</tr>
<tr>
<td>A = atrium</td>
<td>A = atrium</td>
<td>I = inhibit (Demand mode)</td>
<td>R = Rate Response</td>
</tr>
<tr>
<td>V = ventricle</td>
<td>V = ventricle</td>
<td>T = triggered</td>
<td></td>
</tr>
<tr>
<td>D = dual (both atrium and ventricle)</td>
<td>D = dual</td>
<td>D = dual</td>
<td></td>
</tr>
<tr>
<td>O = none</td>
<td>O = none</td>
<td>O = none (Asynch)</td>
<td></td>
</tr>
</tbody>
</table>

- **Chamber paced**
- **Chamber sensed**
- **Action or response to a sensed event**
- **Rate Response on**
VVI

- 1st “V” = Chamber Paced (Ventricle)
- 2nd “V” = Chamber Sensed (Ventricle)
- 3rd “I” = Inhibit
AAI

- 1st “A” = Chamber Paced (Atrium)
- 2nd “A” = Chamber Sensed (Atrium)
- 3rd “I” = Inhibit
DDD: The “four faces” of DDD pacing

- 1st “D” = Chamber Paced (Atrium & Ventricle)
- 2nd “D” = Chamber Sensed (Atrium & Ventricle)
- 3rd “D” = Inhibit & Trigger
Lower Rate Limit

- The lowest rate the pacemaker will pace the heart in the absence of intrinsic or native events
 - DDD
 - LRL 50 ppm
Detect Rate

- The rate that determines when a device will initiate therapy
 - Can be Ventricular or Atrial therapy
Stimulation

- Consists of a given amount of energy
 - Voltage

- Delivered over a given period of time
 - Pulse Width
Capture

- Depolarization of cardiac tissue in response to stimulation or the output pulse.
 - Wide QRS complexes
 - Usually LBBB
Variations on Capture

- Intrinsic Beat
- Paced Beat
- Fusion Beat
- Pseudo Fusion Beat
Stimulation Threshold

- The minimum output pulse needed to consistently capture cardiac tissue
 - Determined through manual or automatic testing
 - Output pulse is incrementally decreased until capture is lost
- Energy safety margin is 2-3 times the threshold.
Stimulation Threshold Influences

- Changes in electrolyte balance within the body
 - Dialysis
 - Severe acid/base imbalances
- Drug and/or dosage changes
 - Class IC agents
 - Pacing thresholds
 - Flecainide, Encainide & Propafenone
 - Class I agents may also increase defibrillation thresholds
- Changes at the tissue/lead interface
 - Ischemia
 - Scar tissue
Sensing

- The ability of the device to “see” native or intrinsic heart beats
 - Measured in millivolts

![Graph showing heart beats with voltage levels of 5 mV, 2.5 mV, and 1.25 mV.]
Sensitivity setting

- Inverse relationship between the sensitivity and the programmed value
 - 2mV setting is more sensitive than a 5mV setting
Anti-tachycardia

- Pacing therapy used to treat tachy-arrhythmias
 - Ventricular tachycardia
 - Atrial tachycardia / flutter
High Energy Shock

- Programmed shock to terminate tachyarrhythmia
 - Ventricular Fibrillation
 - Fast Ventricular Tachycardia
Asynchronous

- Not in synchrony
- Magnet Operation (in pacemakers)
 - Suspends sensing “closes the **pacemakers** eyes”
 - Forced pacing at a pre-determined rate
Magnet Operation & ICD’s

- Detection suspended “closes the eyes of the ICD portion”
- Device cannot see
 - Ventricular Tachycardia
 - Ventricular Fibrillation
- Pacemaker portion of the ICD will function as programmed.
Pacemakers & Implantable Cardiac Defibrillators

Patient Management
Evaluating ECG’s
Patient Management.....

- 53 year old male
 - Woke up feeling dizzy
 - Called the device clinic

- History
 - Pulmonary Hypertension
 - Complete Heart Block

- Advised to go to the ER
Presenting EKG
Cause for concern?

- Symptoms?
- What do you see?
 - Pacing spikes without corresponding QRS.
Cause for Concern?

- Symptoms?
- What do you see?
 - Pacing spikes where they don’t belong
- When does it happen?
 - Look for a pattern
Cause for Concern?

- Symptoms?
- What do you see?
 - Pacing spikes where they don’t belong
- Measure the spikes
 - Spike to spike (1000 msec / 60ppm)
- Ventricular undersensing
Cause for Concern?

- Symptoms?
- What do you see?
 - Missing pacing spikes
 - If pacing occurs at all.....it is “tardy”.....pauses
- Ventricular Oversensing

![Graph showing pacing intervals and ventricular oversensing](image-url)
Cause for Concern?

- Symptomatic?
- What do you see?
 - Pwaves without QRS’s
 - Note change from ApVs to ApVp
Managed Ventricular Pacing (MVP)

AAI(R) Mode
Atrial based pacing allowing intrinsic AV conduction

Ventricular Backup
Ventricular pacing only as needed in the presence of transient loss of conduction

DDD(R) Switch
Ventricular support if loss of A-V conduction is persistent
Managed Ventricular Pacing (MVP)

- Functionally AAIR
 - Apace, Asense, Inhibit, Rate Response
- Note the PR interval
 - Normal is 120-200msec (.12-.20 seconds)
 - 400msec (.4sec)
- There must be a ventricular event between every two atrial events.
Pacemakers & Implantable Cardiac Defibrillators

Patient Management

Medical Testing & Emergencies
Cardiac Arrest

- Treat the patient
 - Initiate CPR
 - Defibrillate
 - Paddle Position: 13cm / 5in from the device
 - Apex / Posterior position
- Evaluate the device once the patient is stable
- If the patient has an Implantable defibrillator
 - The device will attempt to treat the arrhythmia
 - You may feel a slight “shock” if touching the patient
 - Evaluate the patient and treat accordingly.
Electromagnetic Interference (EMI)

- Electromagnetic energy signals from an outside source
- EMI signals in the 10-60hz frequency range
 - Overlaps the cardiac signal range
- May interfere with implantable devices
 - Device sees the interference as native heart beats & doesn’t pace enough or paces with irregularity.
 - Transient mode change
 - Noise reversion
 - Electrical (power-on) reset
- Loss of function
 - Nearing end of service
Electromagnetic Interference (EMI)

- What does EMI look like?
 - Repetitive signal that overloads the sensing circuit
Electromagnetic Interference (EMI)

- Real life example
External Sources of EMI

- Rapid advancement of technology creates unanticipated sources of EMI
- Prevention: Keep technology at least 12 inches from the implantable device
 - Moving away from the signal returns the device to normal function
 - Consult with cardiologist
 - Call device manufacturer
 - Patient services
Hospital Sources of EMI

- Recommendation: Consult with Cardiologist prior to initiation of therapy for risk assessment / device reprogramming.
 - Extracorporeal Shock Wave Lithotripsy
 - Electroconvulsive Shock Therapy (ECT)
 - Radiofrequency Ablation
 - TENS unit
 - TURP
Hospital Sources of EMI

- Electrocautery
 - Most Common Hospital Source
 - Bipolar preferred
 - Grounding plate > 15cm from device
 - 1 sec bursts every 10 seconds recommended
 - Reprogramming / magnet application for dependent patients.
Hospital Sources of EMI

- Therapeutic Radiation risks
 - Device malfunction
 - Device failure
- Precautions
 - Cumulative dose < 500 rads
 - Shielding
 - Device repositioning
Magnetic Resonance Imaging

- **Facts about MRI**
 - Standard of care for diagnosis & treatment of many comorbidities
 - Stroke
 - Various types of Cancer
 - Orthopedic conditions
 - 86% of pacemaker patient are older than 65 with comorbidities that may require an MRI
 - As a rule, pacemaker patients have had limited to no access to this diagnostic tool.
Magnetic Resonance Imaging

- MRI Risks
 - High Pacing rates during testing
 - Runaway Pacemaker
 - Delivery of RF energy down the leads to heart tissue
 - Historically contra-indicated & only performed in extreme circumstances under the supervision of the physician.
- Recent changes
 - MRI conditional Pacemakers
Magnetic Resonance Imaging

- Identify system compatibility with MRI
- Patient ID card will identify MRI conditional system
Magnetic Resonance Imaging

- X-ray
 - Ensures against unknown additional leads
 - Identifies radiopaque symbol

1. Location of the device radiopaque symbol
2. Device radiopaque MRI symbol
3. Lead radiopaque MRI symbol
Magnetic Resonance Imaging

- Reprogramming guidelines
 - Obtain order from Cardiologist
 - Schedule with device clinic personnel or company representative
 - Reprogramming prior to scan
 - Testing and reprogramming post scan

- Patient Monitoring guidelines
 - Visual & voice communication
 - Continuous monitoring of oximetry or ECG
 - NOTE: oximetry is monitored during sequences which make ECG unreadable
 - External defibrillator accessible to control area staff.
MRI 101

Static Field

Gradient Field

RF
Magnetic Resonance Imaging

- Scan guidelines
 - Horizontal cylindrical bore magnet system
 - 1.5 Tesla
 - Normal operating mode
 - Maximum gradient slew rate performance per axis of ≤ 200 Teslas/meter/second (T/m/s)
 - Whole body averaged SAR $\leq 2\text{dW/kg}$, head averaged SAR $\leq 3.2\text{W/kg}$.
Pacemakers & Implantable Cardiac Defibrillators

Technology
Remote Monitoring

- Transtelephonic
 - Rhythm strip transmitted via the telephone
 - Presenting
 - Magnet
 - Non-magnet
 - Clinician initiated
Remote Monitoring

- Website based monitoring

1. The Remote Monitor collects device data via interrogation

2. Data sent from the Monitor to a secure server via a standard telephone line

3. Clinicians review the patient’s device data using the secure website
Remote Monitoring

- Hospital leverage of website based monitoring
 - Data can be exported to the facilities EHR
 - Patient’s device clinic receives transmission data for those patients currently enrolled in their remote monitoring network.

- Allied Health professional uses monitor to interrogate implanted device.
- Transmission confirmation faxed to facility
- Transmission reviewed remotely by Monitoring Center or local clinician
- Findings discussed with facility staff and/or device follow-up clinicians
- Facility receives faxed copies of reports for their records
Leveraging Technology

- Improves workflow
- Decreases patient wait times
- Provides diagnostic information to clinician in less than half the time of traditional workflow methods.
 - From an average of 80 minutes to 15 minutes.
- Improves quality of care
 - Rapid access to diagnostic data
 - More tools to better manage the patient’s arrhythmia status
Questions?

