Histopathological comparison of eyes from patients with autosomal recessive retinitis pigmentosa caused by novel EYS mutations

Vera L. Bonilha · Mary E. Rayborn · Brent A. Bell · Meghan J. Marino · Gayle J. Pauer · Craig D. Beight · John Chiang · Elias I. Traboulsi · Joe G. Hollyfield · Stephanie A. Hagstrom

Received: 25 July 2014 / Revised: 12 November 2014 / Accepted: 14 November 2014 / Published online: 11 December 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract To evaluate the retinal histopathology in donor eyes from patients with autosomal recessive retinitis pigmentosa (arRP) caused by EYS mutations. Eyes from a 72-year-old female (donor 1, family 1), a 91-year-old female (donor 2, family 2), and her 97-year-old sister (donor 3, family 2) were evaluated with macroscopic, scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) imaging. Age-similar normal eyes and an eye donated by donor 1’s asymptomatic mother (donor 4, family 1) were used as controls. The perifovea and peripheral retina were processed for microscopy and immunocytochemistry with markers for cone and rod photoreceptor cells. DNA analysis revealed EYS mutations c.2259+1G>A and c.2620C>T (p.Q874X) in family 1, and c.4350_4356del (p.I1451Pfs*3) and c.2739-?_3244+?del in family 2. Imaging studies revealed the presence of bone spicule pigment in arRP donor retinas. Histology of all three affected donor eyes showed very thin retinas with little evidence of stratified nuclear layers in the periphery. In contrast, the perifovea displayed a prominent inner nuclear layer. Immunocytochemistry analysis demonstrated advanced retinal degenerative changes in all eyes, with near-total absence of rod photoreceptors. In addition, we found that the perifoveal cones were more preserved in retinas from the donor with the midsize genomic rearrangement (c.4350_4356del (p.I1451Pfs*3) and c.2739-?_3244+?del) than in retinas from the donors with the truncating (c.2259+1G>A and c.2620C>T (p.Q874X)) mutations. Advanced retinal degenerative changes with near-total absence of rods and preservation of some perifoveal cones are observed in arRP donor retinas with EYS mutations.

Keywords Recessive retinitis pigmentosa · EYS mutations · Histopathology · Immunohistochemistry

Introduction

The inherited retinal diseases referred to as retinitis pigmentosa (RP) exhibit a wide variety of genetic heterogeneity, variable expressivity, allelic heterogeneity, and phenotypic variability. RP is the most common form of inherited retinal degeneration, affecting 1 in 3,500 people, with more than 1 million patients worldwide [1, 2]. It is characterized by progressive rod and cone photoreceptor cell dysfunction, and results in the clinical appearance of optic nerve pallor, retinal vascular attenuation, and peripheral pigmentary and atrophic changes. Visual deficits in affected individuals initially include night blindness, due to rod photoreceptor loss, followed by progressive loss of peripheral vision. Ultimately, nearly all patients lose central vision between the ages of 50 and 80 years [3].

Families with RP demonstrate all known patterns of Mendelian inheritance, including autosomal dominant, autosomal recessive, and X-linked. Non-Mendelian inheritance patterns such as digenic and maternal inheritance have also been reported. Sixty percent of all RP cases are autosomal recessive (arRP) [4]. Currently, mutations have been identified in 35 different genes in arRP patients (http://www.sph.uth.tmc.edu/Retnet/). Together, mutations in these genes account for approximately 50% of cases. The genes that are associated
with arRP encode proteins that exert their function in different pathways within the retina, including the phototransduction cascade (CNGA1, CNGB1, PDE6A, PDE6B, RGR, RHO, SAG), vitamin A metabolism (ABCA4, LRAT, RLBP1, RPE65), structural or signaling functions (CRB1, RP1, TULP1, USH2A), transcriptional regulation (NR2E3, NRL), and retinal pigment epithelium (RPE) phagocytosis (MERTK), or have unknown functions (CERKL, PRCD, PROM1) [5].

Approximately 5–16 % of arRP cases [6] result from mutations in the eyes shut homolog (EYS) gene, identified at the RP25 locus [5, 7]. Spanning over 2,000 bp (6p12.1-6q15), EYS is one of the largest genes expressed in the human eye to date [7]. The longest isoform of EYS encodes a protein of 3,165 amino acids whose function remains to be elucidated. The only characterized EYS homologue, Drosophila’s spacemaker or SPAM, is involved in the assembly of the light-sensitive rhabdomere, the insect equivalent of vertebrate photoreceptor outer segments [8]. Indeed, the human EYS protein is localized to the photoreceptor outer segments [7]. Considering the evolutionary data and the known function of the Drosophila ortholog, EYS is likely to play a role in the modeling and integrity of retinal architecture [8].

Mutations in more than 60 genes are known to cause RP. Early histopathologic studies of human RP retinas were performed in tissue from donors with unknown genetic mutations and involved only descriptive studies [9–18]. The next group of manuscripts utilized immunocytochemistry assays to analyze the effects of the disease on photoreceptors and the other retinal cells [19–24]. A few recent studies reported histopathologic findings from RP patients with different known gene mutations, including rhodopsin (RHO) [21, 25–29], premRNA processing factor 8 (PRPC8) [30], retinitis pigmentosa GTPase regulator (RPGR) [31, 32], ATP-binding cassette, sub-family A, member 4 (ABCA4) [33]. Such types of studies are crucial to understand how these genetic mutations lead to dysfunction and photoreceptor cell death in RP patients.

Here we report the ocular histopathology in eyes from three arRP donors with mutations in EYS. We focus on retinal pathology changes and the effect of the disease on the distribution of photoreceptors and other retinal cells. Eye donor 1 carries two heterozygous novel truncating EYS gene mutations, and the related eye donors 2 and 3 have two heterozygous EYS deletion mutations. Given the limited molecular characterization of affected individuals whose eyes have been made available for postmortem examination, the opportunity to combine genetic and phenotypic findings is unprecedented.

Methods

Tissue acquisition and fixation Donor eyes were obtained through the Foundation Fighting Blindness (FFB) Eye Donor Program (Columbia, MD, USA). Immunocytochemical analysis was performed with the approval of the Cleveland Clinic Institutional Review Board (IRB #14-057). The research adhered to the tenets of the Declaration of Helsinki. The analyzed tissue included FFB donations #228, 649, 696, 789, 870, 923 and 937. Eyes were obtained from a 72-year-old female (donor 1, family 1, II-4, FFB #923), a 97-year-old female (donor 2, family 2, II-1, FFB #937), and her 91-year-old sister (donor 3, family 2, II-2, FFB #870) (Fig. 1a and b). The asymptomatic carrier mother (donor 4, family 1, I-2, FFB #228) of donor 1 was also evaluated (Fig. 1a and b). Eyes were encuclated 6 h postmortem and fixed in 4 % paraformaldehyde (PF) and 0.5 % glutaraldehyde in phosphate buffer. The gloes were stored in 2 % paraformaldehyde in PBS. Postmortem eyes from 61-, 65-, and 88-year-old donors without a history of retinal disease were used as controls.

Genetic analysis Approximately 10 ml of peripheral blood was collected from donor 1 (family member II-4) and family members II-5, II-6, II-7, II-8 from family 1. Blood was also collected from donor 2 (II-1) of family 2. DNA was extracted and purified from leukocytes by means of the Gentra Systems PUREGENE DNA Purification Kit (Qiagen). DNA for donors 3 (II-2, family 2) and 4 (I-2, family 1) was extracted from fixed or frozen retinal tissue samples using the Gentra Systems PUREGENE DNA Purification Kit (Qiagen).

In family 1, direct testing for mutations in 13 arRP genes (VMD2, CNGA1, CNGB1, CRB1, EYS, LRAT, NR2E3, NBL, PDE6A, PDE6B, RHO, RPE65, USH2A) was performed on patient II-5 by PCR amplification and DNA sequencing in two directions of all coding exons and exon/intron boundaries, including at least 50 nucleotides into the intron. Two novel heterozygous mutations were identified in EYS (GenBank RefSeq NM_001142800.1), c.2259+1G>A and c.2620C>T (p.I1451Pfs*3). In an attempt to identify the second pathogenic mutation, the DNA coding sequence were amplified from genomic DNA and evaluated by sequence analysis. No mutation was identified.

In family 2, DNA from patient II-1 (donor 2) was evaluated by Asper Ophthalmics using an APEX (arrayed primer extension)-based test. Seven hundred and ten mutations in 28 arRP genes (CERKL, CNGA1, CNGB1, MERTK, PDE6A, PDE6B, PNR, RDH12, RGR, RLBP1, SAG, TULP1, CRB, RPE65, USH2A, USH2A, LRAT, PROM1, PBP3, EYS, ABCA4, APLI1, CNGA3, CNGB3, GRK1, IMPG2, RHO, and RP1) were evaluated. One heterozygous mutation in EYS was identified, a 7 base pair deletion notated as c.4350_4356del (p.11451Pfs*3). In an attempt to identify the second pathogenic mutation, PCR products corresponding to the complete EYS coding sequence were amplified from genomic DNA and evaluated by sequence analysis. No mutation was identified. To further search for the second pathogenic variation, the DNA was analyzed using a comparative genomic hybridization array (Oxford Gene Technology; Eye gene array v2). Array data was analyzed by using CytoSure software. A heterozygous midsize genomic rearrangement, c.2739–? 3244+? del, was identified.
To further search for the second pathogenic variation, the DNA was analyzed using a comparative genomic hybridization array (Oxford Gene Technology; Eye gene array v2). Array data was analyzed by using CytoSure software. A heterozygous midsize genomic rearrangement, c.2739-?_3244+?del, was identified. The four-exon deletion was confirmed by qPCR analysis using primers Hs06795327 and Hs06137405 (Life Technologies).

Fundus imaging Macroscopic fundus images were collected using a Zeiss AxioCam MRC5 camera equipped with a macro zoom lens (Zoom 700 Navitar TV Lens, Navitar, Inc, Rochester, NY, USA) and AxioVision AC Software (Carl Zeiss MicroImaging, Inc.). Prior to imaging, the anterior segment of each eye was removed using a custom-made eye globe holder and microtome blade (AccuEdge 4685, Sakura Finetek USA, Inc., Torrence, CA, USA). The remaining posterior segment was transferred to a custom-made plexiglass chamber, which permitted containment of both the sample and PBS immersion fluids required for imaging. Within the plexiglass chamber, the sample was placed with the posterior pole oriented downward and the opened anterior segment directed upward. The plexiglass chamber was then filled with PBS to the level of the anterior segment opening. In order to eliminate specular reflections from vitreous interface, several drops of PBS were dispensed into the open eye cup using a pipette. Angled illumination from a bifurcated fiber optic light source (Fostec EJA, Schott North America, Inc., Elmsford, NY, USA) was used to illuminate the sample for image acquisition.

Fig. 1 Mutational analysis of individuals with arRP due to EYS mutations. (a) Pedigree of family 1. Slashed symbols reflect deceased family members. Affected family members are shown with filled symbols, unaffected family members are shown with unfilled symbols, and unaffected carrier family members are shown with unfilled symbols with a black dot inside. Postmortem analysis was done on affected member II-4, referred to as donor 1 (*), and in their unaffected mother (I-2), referred to as donor 4 (*). (b) Pedigree of family 2. Postmortem analysis was done on affected members II-1 and II-2, referred to as donors 2 (*) and 3 (*) respectively. (c) Sequence analysis of family 1 identified two heterozygous EYS mutations, c.2259+1G>A and p.Q874X. DNA analysis was performed on all three affected members (II-4, II-5 and II-6), their two unaffected living sisters (II-7 and II-8), and their mother (I-2). (d) Sequence analysis of family 2 identified a heterozygous 7 base pair deletion in EYS, p.I1451Pfs*3. Comparative genomic hybridization identified a heterozygous deletion of exons 15-18, c.2739-?_3244+?del. DNA analysis was performed in two affected family members, II-1 and II-2. (e) Predicted domain structure and distribution of the four EYS mutations identified in this study.
Scanning laser ophthalmoscope (SLO) SLO images were collected using a model HRA2 confocal scanning laser ophthalmoscope (Heidelberg Engineering, Inc.) in the same manner as the macroscopic fundus images. The HRA2 was rotated 90° so that the scan direction was perpendicular to the table surface. The system was operated in high-resolution mode, which provides an image pixel format of 1536 × 1536 when used with a 55° wide-field objective lens. SLO images of the posterior pole were collected using infrared reflectance (SLO-IR), infrared dark field (SLO-IRDF), autofluorescence (SLO-AF), and red-free dark field (SLO-RFDF) imaging modes at field of view (FOV) settings of 55°, 35°, and 25°. Online algorithms within the HRA2 system software enabled automatic real-time averaging and tracking of sequentially collected images. This parameter was preset for averaging 25 image frames, which further enhanced signal-to-noise ratio and image contrast, especially for autofluorescence (SLO-AF) mode.

Spectral domain optical coherence tomography (SD-OCT) SD-OCT images were collected using an SD-OCT system (Model SDOIS, Bioptigen, Inc.) in a manner similar to the aforementioned macroscopic and SLO imaging modalities. A single telecentric objective lens was employed to collect 5 × 5 mm and 10 × 10 mm FOV of the posterior pole. The SDOIS system has a center operating wavelength of ~840 nm, spectral bandwidth of 65 nm, and axial, in-depth resolution of ~6–7 μm (in air). A 1-mm ruby sphere was placed on the optic nerve head to provide a reference scale. SD-OCT imaging was performed using the following scan parameters: (1) 5-mm linear scan of the horizontal meridian through the optic nerve and fovea @ 1000 A-scans/B-scan, (2) 10-mm linear scan of the horizontal meridian through the optic nerve and fovea @ 1000 A-scans/B-scan, (3) 5-mm² volume scan of the posterior pole @ 500 B-scans/volume × 250 A-scans/B-scan, and (4) 10-mm² volume scan of the posterior pole @ 500 B-scans/volume × 250 A-scans/B-scan. Post-acquisition images were averaged with a line and frame filter settings of 3 and 3 respectively via the Bioptigen InVivoVue SDOIS Software version 1.7.

Semi-thin epon sections and morphological analysis A small area of the retina/RPE/choroid complex from both the perifoveal and peripheral regions of the arRP donors, asymptomatic mother, and controls were fixed in 2.5 % glutaraldehyde in 0.1 M cacodylate buffer, sequentially dehydrated in ethanol, and embedded in Epon. Plastic sections (1 μm) of all samples were stained with toluidine blue and photographed by light microscopy with a Zeiss Imager Z.1 microscope equipped with a Zeiss AxioCam MRC5 camera.

Immunohistochemistry Small areas from the perifovea and peripheral eye wall were cut and infused with 10 and 20 % sucrose in PBS, and embedded in Tissue-Tek “4583” (Miles Inc., Elkhart, IN, USA). 10 μm cryosections were cut on a HM 505E cryostat (Microm, Walldorf, Germany) equipped with a CryoJane Tape-Transfer system (Instrumedics, Inc., Hackensack, NJ, USA). Prior to labeling, embedding medium was removed through two consecutive PBS incubations for 20 min. The tissue was then processed for immunofluorescence labeling. Sections were blocked in PBS supplemented with 1 % BSA for 30 min and incubated with monoclonal antibodies 1D4 to rhodopsin (ab5417, 1:1000, from Abcam), 7G6 to cone arrestin (1:100, from Dr. P. MacLeish, Morehouse School of Medicine, Atlanta, GA, USA), and polyclonal antibodies to red/green cone opsins (AB5405, 1:1200, Chemicon) in PBS/BSA overnight at 4 °C. Cell nuclei were labeled with TO-PRO®-3 iodide (blue, 1 mg/ml, Molecular Probes, Eugene, OR, USA). Sections were then labeled with secondary antibodies goat anti-mouse IgG Alexa Fluor 488 (1:1000; Molecular Probes), goat anti-rabbit IgG Alexa Fluor 594 (1:1000; Molecular Probes), and goat anti-rabbit IgG Alexa Fluor 488 (1:1000; Molecular Probes) for 1 h at room temperature. Sections were analyzed using a Leica laser scanning confocal microscope (TCS-SP2, Leica, Exton, PA, USA). A series of 1 μm x y z (en face) sections were collected. Each individual x y image of the retinas stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). Microscopic panels were composed using AdobePhotoshop CS3 (Adobe, San Jose, CA, USA). Two different commercially available EYS antibodies were tested but failed to react with our tissue, probably due to the presence of glutaraldehyde in the fixative buffer.

Results

Clinical findings

Two unrelated families were evaluated. Family 1 reported Irish and French ancestry, whereas family 2 is Scandinavian. Donor 1 (family 1, II-4) was most recently examined at age 70, 2 years before her death (Fig. 1a, star). At that time, her visual acuity was hand motion OD and 20/400 OS. Dilated fundus examination of both eyes showed a pale optic nerve head, attenuated vessels, and bone spicule pigment in the periphery with pavingstone degeneration inferiorly. She also had some mottled RPE pigmentation in her left eye. No other clinical or imaging information was available. Donor 2 (family 2, II-1) was last examined at age 96, 1 year before her death (Fig. 1b). At that time, her visual acuity was 20/400 OU. Dilated fundus exam showed optic disc atrophy, choroidal atrophy, vascular attenuation, and chorioretinal degeneration. Donor 3 (family 2, II-2) was last examined at age 88, 3 years prior to her death (Fig. 1b). She had light perception vision in both eyes. Her previous fundus examinations...
showed the typical triad of characteristics indicative of RP —
optic nerve head pallor, attenuated retinal vessels, and bone
spicule pigmentation in the periphery. Clinical records were
not available for donor 4 (family 1, I-2) (Fig. 1a).

Molecular genetic analysis

In family 1, genetic analysis was performed on the affected
donor 1 (II-4), her unaffected mother (donor 4, I-2), two
affected siblings (II-5 and II-6), and two unaffected siblings
(II-7 and II-8) (Fig. 1a). DNA sequence analysis in compari-
son to GenBank entry NM_001142800 revealed two novel
heterozygous mutations in EYS, c.2259+1G>A and
c.2620C>T (p.Q874X), in patient II-5 (Fig. 1c). Segregation
analysis revealed that both affected sisters, II-4 (donor 1) and
II-6, carried both mutations; while the two unaffected sisters
were both heterozygous for the c.2259+1G>A mutation.

In family 2, genetic analysis was performed on affected
donor 2 (II-1) (Fig. 1b). DNA analysis revealed a heterozy-
gous 7 bp deletion in EYS, c.4350-4356del (p.I1451Pfs*3), and
comparative genomic hybridization revealed an additional
deletion of exons 15–18, c.2739-?_3244+?del (Fig. 1d).
Targeted sequence analysis in patient II-2 (donor 3) revealed
that she was also heterozygous for p.11451Pfs*3 (Fig. 1b).
Insufficient DNA from donor 3 prevented the performance of
midsize deletion analysis. The locations of these identified
mutations relative to the predicted EYS protein domain struc-
ture are shown in Fig. 1e.

Ex-vivo imaging of donor eyes

The combination of fundus, confocal scanning laser ophthal-
omicroscopy (SLO) and spectral-domain optical coherence to-
mography (SD-OCT) imaging systems can provide compre-
henensive characterization of retinal lesions prior to histopathol-
ogy [34]. Therefore, these imaging techniques were per-
formed on all arRP and control eye donors, and qualitatively
compared (Figs. 2 and 3). Anatomical landmarks, such as the
optic nerve and fovea, were clearly identified in each donor
eye using all three imaging modalities.

Visible light fundus imaging showed inherent differences
between the control and arRP eyes, which included the pres-
ence or absence of peripheral bone spicule pigment and in-
herent differences in the overall color hue of the fundus. Bone
spicule pigment density was more pronounced in donor 3
(Fig. 2d) than in donors 1 and 2 (Fig. 2b and c). The fundi
of arRP donor eyes had hues that were similar in appearance,
but were more “whitish” in color (Fig. 2b to d) than the control
eye (Fig. 2a). Optic disc pallor, attenuated retinal vessels, and
profound atrophy of the RPE and choriocapillaris were only
observed in arRP eyes.

Examination by SLO revealed areas of detached retina in
the control eye (Fig. 2e and i, asterisks) and in the majority
(2/3) of arRP eyes (Fig. 2f, h, j and l, asterisks); the retinal
detachments were attributed to post-mortem enucleation and
removal of anterior segments in preparation for imaging. In
arRP eyes, both SLO infrared (SLO-IR) and autofluorescence
(SLO-AF) showed bone spicule pigment in agreement with
fundus macroscopic imaging. SLO-IR imaging revealed loss
of RPE in the posterior pole including the macula, perimacula,
and areas surrounding the optic nerve in the eyes of donors 2
and 3 (Fig. 2g and h) as compared to control (Fig. 2e). SLO-
AF imaging identified hypofluorescence in one contiguous
region involving the macula and area surrounding the optic
disk of donor 3 (Fig. 2l), as opposed to the focal loss of RPE in
demarcated regions in eyes from donors 1 and 2 (Fig. 2j and
k), and an absence of both abnormal findings in the control
retina (Fig. 2i). These data suggest that different EYS muta-
tions in arRP donors lead to retinal changes that can be
observed using multiple imaging modalities.

SD-OCT imaging was performed on each of the arRP and
control eyes (Fig. 3). In-depth B-scans from the control eye
(Fig. 3a and e) revealed a normal-appearing retina with clearly
defined fovea, some evidence of laminar architecture, and no
appreciable evidence of retinal thinning and/or degeneration.
Images from arRP donors revealed retinas of appreciable
thickness but with less organized architecture and integrity
in the macular region (Fig. 3b-d and f-h, bracket). In contrast,
the peripheral regions showed a retina that was thinner than
control eyes, suggesting loss of cells and axons (data not
shown). Eyes from donors 2 and 3 had macular detachments
between the optic nerve and fovea (Fig. 3g and h, asterisk) that
were not previously identified by either fundus macroscopic
imaging or SLO techniques. Donor 2’s eye also showed what
appeared to be a choroidal detachment adjacent to the optic
nerve and below the region of retinal detachment (Fig. 3g,
arrow). These data suggest that arRP EYS mutations lead to
the atrophy of the retinas, in addition to causing substantial
disorganization of the cellular layers in the macular and
perifoveal regions.

Histopathology of donor retinas

To evaluate the effect of EYS mutations on retinal structure,
toluidine blue-stained plastic sections of arRP and control
donor eyes were examined. A schematic drawing depicts the
regions harvested and processed for observation in both the
morphological and immunohistological assays (Fig. 4a). The-
se include: the periphery (Fig. 4a, region 1) and perifovea
(Fig. 4a, region 2). Histology of control retinas in the periph-
ery (Fig. 4b) and perifovea (Fig. 4d) showed normal lamina-
tion patterns. In all three arRP donors, a highly degenerated
retina with disorganization of the retinal laminae and gliosis
was evident in all peripheral areas analyzed (Fig. 4c–e). Moreover, photoreceptor outer segments were also absent in
all areas analyzed. Intraretinal bone spicule pigment was
visible in the retinas of donors 2 (Fig. 4d, arrow) and 3 (Fig. 4e, arrow). The perifovea displayed a prominent inner nuclear layer. Eyes from donors 2 (Fig. 4h and 3 (Fig. 4i) displayed localized areas of RPE atrophy in the perifovea, whereas the RPE was uniformly thin in the perifovea of donor 1 (Fig. 4g). Patchy, disorganized cones were observed subjacent to the RPE in the perifovea of donors 2 (Fig. 4h, arrowheads) and 3 (Fig. 4i, arrowheads). These data suggest that the

Fig. 2 Ex-vivo imaging of arRP donor eyes with EYS mutations. Fundus images (a-d) and SLO images (e-i) were collected from donors 1, 2, and 3 and an age-similar control. In the control eye, detached retinas are apparent with all imaging modalities (a, e, i, *). In all three arRP eyes, fundus images reveal bone spicule pigment in mid-peripheral and peripheral areas to varying degrees (b-d). SLO-IR imaging identified degeneration in the entire posterior pole region including the macula, perimacula, and areas surrounding the optic nerve, due to focal loss of RPE in donors 2 (g) and 3 (h) as compared to an age-similar control eye (e). SLO-AF imaging identified hypofluorescence in one contiguous region involving the macula and area surrounding the optic disk of donor 3 (i), as opposed to the individually demarcated and isolated regions seen with both donors 1 (j) and 2 (k) and the control eye (i). Scale bars in fundus image=0.5 cm

Fig. 3 Ex-vivo OCT imaging of arRP donor eyes with EYS mutations. OCT images were collected from donors 1, 2, and 3 and an age-similar control. En-face images reveal the location (dashed lines) of the in-depth, B-scan images of control (a) and arRP donors 1 (b), 2 (c) and 3 (d). The fovea (arrowhead) and optic nerve (ON) were identified in all donor eyes. In-depth B-scans from the control eye (e) revealed a normal appearing retina with clearly defined fovea, some evidence of laminar architecture, and no appreciable evidence of retinal thinning or degeneration. Images from the arRP donors (f-h) revealed retinas of appreciable thickness but with less organized architecture and integrity in the macular region (horizontal bracket). In contrast, the perimacular regions showed some evidence of thinned retina relative to the control retina, suggesting degeneration. Donors 2 (g) and 3 (h) had macular (*) and choroidal (arrow) detachments, as indicated in the B-scans. B-scan scale is 0.5 mm

EYS mutations cause profound changes in the retina, leading to the loss of several retinal cell layers and the appearance of gliosis.

Immunohistochemistry of donor retinas

Human EYS protein is localized to the photoreceptor outer segments, and is believed to play a role in the modeling of retinal architecture [8]. In order to investigate if mutations in EYS affect the retinal architecture, immunofluorescent studies with antibodies to photoreceptor outer segment proteins were performed. Immunostaining of control retinas with rhodopsin antibodies revealed that rhodopsin distribution was restricted to the rod outer segments in the retinal periphery (Fig. 5a) and perifoveal (Fig. 5e). Rhodopsin-labeled cells were rarely encountered in the retinal periphery of donor 1 (Fig. 5b) while some were still present in the periphery of donors 2 (Fig. 5c) and 3 (Fig. 5d). Rhodopsin-positive cells were also observed along the outer retina directly abutting the choroid in some areas where the RPE was absent (Fig. 5c and d, arrows). In addition, rhodopsin was not restricted to the outer segments in all the arRP donor retinas and rhodopsin-positive cells had lost their slim, rod-shaped morphology. In the perifovea of donors 1 (Fig. 5f) and 2 (Fig. 5g), no rhodopsin-labeled cells were found, while donor 3 (Fig. 5h) displayed several disorganized rhodopsin-labeled cells. Although the retinas had reached an advanced stage of degeneration, our data suggest that the EYS mutations identified in arRP donors have an effect on the subcellular localization of rhodopsin and the distribution of rhodopsin-positive cells.

Next, we investigated the distribution of cone photoreceptors in retinas harboring EYS mutations. Immunostaining of control retinas with cone arrestin antibodies revealed that the protein was distributed along the entire conical-shaped plasma membrane, from the tip of the outer segment to the synaptic base, both in the retinal periphery (Fig. 6a, green) and in the perifovea (Fig. 6e, green). Strikingly, cones were mostly absent from the periphery of all the arRP donor retinas (Fig. 6b-d). However, in the perifovea of all arRP donors, cone arrestin staining displayed the typical conical-shaped cellular distribution, with lack of synaptic terminals and outer segments (Fig. 6e-h). These cone arrestin-positive cells were also characterized by the redistribution of red–green opsin to the inner segments and cell bodies. In the perifovea of donor 1, red–green opsin labeling was significantly decreased and the cone arrestin distribution was mostly confined to a row of shortened cells (Fig. 6f). Interestingly, the perifovea from both donors 2 (Fig. 6g) and 3 (Fig. 6h) displayed a prominent inner nuclear layer. Donors 2 (h) and 3 (l) displayed localized areas of RPE atrophy, whereas the RPE was thin in the perifovea of don 1 (g) as compared to the control donor (f). Patchy, disorganized cone remnants were observed on top of the RPE in the perifovea of donors 2 (h, arrowhead) and 3 (l, arrowhead). GCL=ganglion cell layer; INL=inner nuclear layer; ONL=outer nuclear layer; POS=photoreceptor outer segments; RPE=retinal pigment epithelium; Ch=Choroid. Scale bar=50 µm.

Fig. 4 Histology of arRP donor eyes with EYS mutations. A fundus image of the studied eye (OS) with a schematic drawing of the regions cut and processed for cryosectioning and immunolabeling is shown (a). Toluidine blue-stained plastic sections (1 µm) of retinas from donors 1, 2, and 3 and an age-similar control. Morphology of the control retina in the periphery (b) and perifoveal (f) regions displayed typical retinal lamina. Histology of the periphery of all three donors revealed a highly degenerated retina with disorganization of the lamina and cellular layers and gliosis in all areas analyzed (c–e). Photoreceptor outer segments were also absent in all areas analyzed. Intraretinal bone spicule pigments were visible in the retinas of donors 2 (d, arrow) and 3 (e, arrow). In contrast, the perifovea of all arRP donors displayed a prominent inner nuclear layer. Donors 2 (h) and 3 (i) displayed localized areas of RPE atrophy, whereas the RPE was thin in the perifovea of donor 1 (g) as compared to the control donor (f). Patchy, disorganized cone remnants were observed on top of the RPE in the perifovea of donors 2 (h, arrowhead) and 3 (i, arrowhead). GCL=ganglion cell layer; INL=inner nuclear layer; ONL=outer nuclear layer; POS=photoreceptor outer segments; RPE=retinal pigment epithelium; Ch=Choroid. Scale bar=50 µm.
(Fig. 6h) displayed cone arrestin-labeled cells concentrated in areas that still had some RPE cells. These cones displayed a distribution of red–green opsin through the entire cell body. These data suggest that EYS mutations cause a profound loss of peripheral cones, and can affect the subcellular localization of cone opsin- and cone arrestin-positive cells in the few perifoveal cones that survive.

Histology and immunocytochemistry of the unaffected eye from the mother of donor 1

The retinal periphery of the unaffected mother of donor 1 (donor 4) revealed typical retinal lamination similar to an age-similar control; however, a significant decrease in the number of nuclei of the inner and outer nuclear layers was
photoreceptor outer segments as observed in control retinas (Fig. 7b, green) and red/green cone opsin (d, red) restricted to the photoreceptor outer segments as observed in control retinas (a, c). Cone arrestin labeling in the unaffected carrier donor retina (d, green) displayed similar distribution when compared to the control retina (c). Nuclei were labeled with TO-PRO-3. GCL = ganglion cell layer; INL = inner nuclear layer; ONL = outer nuclear layer; POS = photoreceptor outer segments. Scale bar = 40 μm

noted (Fig. 7b and d). In addition, donor 4 displayed both rhodopsin (Fig. 7b, green) and red–green cone opsin (Fig. 7d, red) distribution restricted to the photoreceptor outer segments, as observed in the control retinas (Fig. 7a and c). Cone arrestin was also distributed throughout the entire cell in donor 4 (Fig. 7d, green), similarly to the control retinas (Fig. 7c). These data suggest that the unaffected mother of the arRP donor 1, carrying an obligatory heterozygous EYS mutation, does not display any significant changes in retinal structure, and is similar to age-similar normal controls.

Discussion

The examination of postmortem eye tissues obtained from individuals in whom the disease-causing gene has been identified offers a unique opportunity to study the relationship between genotype and disease pathogenesis and the effects of the genetic defect on retinal structures. There continues to be a relative lack of the combination of genetic information with clinical and histopathological data from the same individual. We present for the first time the ocular histopathological changes in two arRP families with different, novel mutations in the EYS gene. We compare the relationship between genotype and disease phenotype in these eyes.

The gene responsible for arRP at the RP25 locus was identified several years ago as EYS (an ortholog of Drosophila eyes shut, eyes), and encodes an ortholog of the Drosophila protein SPAM [7], a multi-domain protein containing 3,165 amino acids and comprised of several protein motifs commonly found in extracellular molecules (Fig. 1e). EYS consists of 21 epidermal growth factor (EGF)-like domains in its N-terminal region, followed by five C-terminal laminin G domains that are interspersed with additional EGF repeats. The protein is also predicted to contain a signal peptide for secretion into the extracellular environment. Drosophila spam is expressed in the eye of several insect species with an open rhodobin system, wherein the rhabdomeres or photoreceptor cells of each ommatidium in the compound eye are separated from each other, allowing each photoreceptor to act as an independent unit. Loss of EYS switches an open rhodobin system to a more primitive closed one found in insects such as ants and bees [7]. Considering the evolutionary data and the known function of the Drosophila ortholog, human EYS is likely to have a role in the integrity of photoreceptor architecture. Indeed, immunohistochemical studies confirmed the localization of this protein to the photoreceptor outer segments [7]. Interestingly, despite the reported mutations and the presumed loss of function leading to arRP, EYS is not present in rodent eyes, making this gene the fourth Mendelian disease–associated human gene whose orthologs are disrupted or absent from rodent genomes [7].

EYS is a major arRP disease-causing gene. Mutations have been identified in families of different ancestral origin, and are estimated to account for 5–16% of arRP cases [6]. The types of mutations identified in patients include missense, nonsense, microdeletions and insertions, 5′UTR variations, and copy-number variations such as midsize genomic rearrangements. In the present study, we performed a comprehensive comparison of four eye donors (three affected and one carrier) from two unrelated families with EYS mutations, including clinical, genetic, and morphologic analyses. The heterozygous EYS mutations c.2259+1G>A and c.2620C>T were identified in family 1, whereas the heterozygous mutations p.I1451Pf6*3 and c.2739-?_3244+?del were identified in family 2. The two mutations in family 1 are novel, and have not been reported in previous studies in patients of different ethnicities [6, 35–43]. On the other hand, the deletions identified in family 2 have been previously reported [6, 35, 36, 41, 42]. All four mutations described in the present report are considered pathogenic. Two of them (c.2259+1G>A and p.Q874X) are located within EGF domains, and are predicted to have a truncating effect on the protein. p.I1451Pf6*3 is predicted to lead to a premature stop codon three amino acids downstream, and probably truncates...
the last half of the protein, including the coiled coil domain and all laminin G domains. c.2739-?_3244+?del is predicted to lead to a loss of four exons, which deletes a portion of the EGF domains. In family 1, it is likely that the altered mRNA transcripts would be degraded through nonsense-mediated decay. In family 2, it is possible that the mRNA from the midsize four-exon deletion is used for protein translation, and leads to an abnormal yet partially functional protein product.

Clinically, patients carrying pathogenic EYS mutations have night blindness as the initial symptom, as well as retinal bone spicule pigmentation and attenuated retinal vessels, followed by progressive visual field constriction. On average, visual acuity begins to decrease at around 30 years of age, and continues to deteriorate over the next few decades [6, 36, 43]. The phenotype in patients with RP due to EYS mutations has been described previously, and is relatively homogeneous [6, 38, 44, 45]. Generally, they exhibit markedly reduced scotopic and photopic responses on ERG, have retinal thinning with macular involvement on OCT, and have a fundus appearance typical for RP. Overall, patients with EYS mutations have a more severe clinical course than some of the other RP genotypes. Central vision is relatively preserved until late in the disease course.

In the present study of eyes from older individuals with EYS mutations, both imaging and histological examinations revealed highly degenerated retinas, with little evidence of stratified nuclear layers in the periphery. In contrast, the perifoveal region maintained a prominent inner nuclear layer. Donors 2 (age 97) and 3 (age 91) from family 2 had a few areas of preserved RPE in both the periphery and perifovea, whereas the RPE was thin in the perifovea and absent in the periphery of donor 1 (age 72). Rods were mostly absent in all arRP donors, except in the periphery, where the cells appeared morphologically abnormal. Cones were also mostly absent from the periphery of all arRP donors; however, patches of cones were observed in the perifovea of donors 2 and 3. This preservation of cones in the perifovea is probably responsible for the central vision that some patients maintain until late in the course of the disease.

It is important to note that the donor ages differed by 20–25 years, suggesting that different stages of the disease may be represented in the tissues studied. Interestingly, the disease pathology of the older aged donors from family 2 appeared to be less severe. We speculate that the retinas from donors 2 and 3 would have had better morphology than the retina from donor 1 if they would have been evaluated at a similar age. It is possible that the two different types of mutations represented in these donors may show specific differences in the rate of retinal degeneration, but this is beyond what can be inferred by the end-stage pathology of limited specimens.

The data presented here provides new insights into the pathology and disease manifestation caused by EYS mutations. Previous studies have shown that EYS mutations lead to severe defects in inter-rhabdomeral space formation in Drosophila eyes [8]. As a result, it has been hypothesized that the human EYS protein may be essential for the formation and integrity of the photoreceptor outer segment and overall retinal architecture. We show that combinations of four different EYS mutations lead to advanced retinal degeneration, with near-total loss of rods. The preservation of macular cones in arRP donor retinas with a midsize exonic deletion may indicate an ability for individuals with this type of mutation to maintain some central vision for a longer duration than individuals with truncating mutations and despite severe visual dysfunction, suggesting an opportunity for cell rescue if therapy becomes available. This observation is significant due to the estimation that midsize genomic rearrangements in EYS are responsible for the disease in ~4 % of arRP cases in the absence of other mutations, and constitute the second pathogenic variation in ~15 % of cases where a second mutation is detected by sequence analysis [41]. Further experimental research will be required to corroborate this possible association. The present study demonstrates that the identification of disease-causing mutations, combined with the histopathological analyses of donor eyes, provides a more comprehensive platform for the study of the natural history of retinal dystrophies, and possible predictions of the clinical course of the disease. These observations undoubtedly help genetic counseling as well as future targeted therapies.

Acknowledgments The authors thank Dr. Peter MacLeish (Morehouse School of Medicine, Atlanta, GA, USA) for providing us with the antibody to cone arrestin (7G6), and Xiaoping Yang for expert technical assistance. Supported by The Foundation Fighting Blindness Histopathology Grant F-OH01-1102-0231 (JGH), Research Center Grants from The Foundation Fighting Blindness (JGH), Research to Prevent Blindness Unrestricted Grant, The Llura and Gordon Gund Foundation, and National Institutes of Health grant R01EY014240-08 (JGH).

References
retinitis pigmentosa and cause a fairly homogeneous phenotype. Ophthalmology 117:2026–2033, 2033 e2021-2027
RESEARCH REPORT

Retinal Histopathology in Eyes from a Patient with Stargardt disease caused by Compound Heterozygous ABCA4 Mutations*

Vera L. Bonilha¹, Mary E. Rayborn¹, Brent A. Bell¹, Meghan J. Marino¹, Gerald A. Fishman², and Joe G. Hollyfield¹

¹Cole Eye Institute, Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA, and ²Chicago Lighthouse for People Who Are Blind or Visually Impaired, Chicago, IL, USA

ABSTRACT

Background: The goal of this study was to define the histopathology of the retina in donor eyes from a patient with Stargardt disease (STGD1) due to compound mutations in the ABCA4 gene.

Materials and Methods: Eyes were obtained from a 66-year-old female and fixed within 18 hours postmortem. The fundi of the posterior globes were evaluated with macroscopic, SLO and OCT imaging. The perifoveal and peripheral regions were processed for electron microscopy and immunocytochemistry using cell specific antibodies. Two age-similar normal eyes were used as controls. Prior ophthalmic examinations and genetic test results were also reviewed.

Results: All imaging modalities showed scattered bone spicules in the peripheral retina. Atrophy of the RPE was present around the optic nerve as evidenced by the absence of SLO autofluorescence. Histology analysis showed a severely degenerated fovea with little evidence of any retinal layering or remaining RPE. The fovea was severely degenerated, with little evidence of any retinal cell layer, including the RPE. In contrast, retinal nuclear layers were present in the periphery. The perifoveal region contained few cones labeled with cone-specific antibodies; some rhodopsin-labeled cells, reactive glia labeled with GFAP; and decreased autofluorescence of the RPE. The fovea was free of cone-specific labeling, contained a few disorganized rhodopsin-labeled cells and showed substantial GFAP labeling and no autofluorescent material in the retina. The periphery displayed stubby cells labeled with cone-specific antibodies, decreased rhodopsin-labeled cells, increased GFAP staining, and autofluorescent granules in the RPE.

Conclusions: The histopathology of the retina in this patient with Stargardt disease displayed a highly degenerated fovea. In all retinal locations studied, cones were more severely affected than rods.

Keywords: ABCA4, histology, immunohistochemistry, photoreceptors, Stargardt disease

INTRODUCTION

Stargardt disease (STGD1, OMIM# 248200), is an early onset form of macular degeneration with an estimated frequency between 1 in 8000 and 1 in 10,000.¹ Most cases of Stargardt disease are autosomal recessive and caused by mutations in the ABCA4 gene located on chromosome 1p22.¹ Mutations in ABCA4 have been associated with several different clinical phenotypes – Stargardt disease/fundus flavimaculatus, autosomal recessive retinitis pigmentosa, autosomal recessive cone-rod dystrophy, bull’s eye maculopathy, and age-related macular degeneration.² Over 700 disease-causing mutations³ in the ABCA4 gene have been identified, and some studies suggest genotype-phenotype correlations.⁴⁻⁶

*Preliminary data from this study were presented at the 2013 annual meeting of the Association for Research in Vision and Ophthalmology. Correspondence: Vera L. Bonilha, PhD, Cleveland Clinic Foundation, The Cole Eye Institute, 9500 Euclid Avenue, i31, Cleveland, OH 44195, USA. Tel: +1 216 445 7690. Fax: +1 216 445 3670. E-mail: bonilhav@ccf.org

Received 16 April 2014; revised 19 August 2014; accepted 23 August 2014; published online 22 September 2014
STGD is characterized by progressive macular atrophy accompanied by the loss of central vision.7,8 Excessive accumulation of lipofuscin in the RPE is an early feature of the disease.9,10 The ABCA4 gene encodes a transport protein located in the photoreceptor outer segment disc margin that facilitates the translocation of all-trans retinal through the disc membrane lipid bilayer.11 ABCA4 mutations cause a dysfunction of this transport that results in the retention of all-trans retinal within the photoreceptor disc and disrupts normal retinoid movement. Ultimately, there is an increase in retinoid accumulation in the RPE as shed tips of the outer segment containing excessive retinoid load are phagocytized. Within the RPE the all-trans retinal is converted to A2-E, a major component of lipofuscin, which is thought to be toxic to both the RPE and the photoreceptors.12,13 It is not known whether the ultimate loss of vision in patients with STGD occurs primarily from dysfunction of the RPE, photoreceptors, or both.

Little is known about how mutations in the ABCA4 protein lead to the degeneration of the retina, RPE and eventually the choroid. In the present study, we analyzed the retina, RPE and choroid morphology and the distribution of various retinal cell markers in the donor eyes from a female with mutations in the ABCA4 gene. To our knowledge this is the first histopathological description of STGD1 donor eyes to be reported in which specific mutations in the ABCA4 gene causing the disease is known.

\section*{MATERIALS AND METHODS}

\subsection*{Patient Information}

The donor globes from a 66-year-old female with STGD1 were enucleated 18 hours postmortem and fixed in 4\% paraformaldehyde (PF) and 0.5\% glutaraldehyde in phosphate buffer. Postmortem eyes from a 61- and a 65-year-old donor without a history of retinal disease were used as control tissues (donation numbers #649 and 696) and were fixed within 12.5 and 14.5 hours postmortem. The STGD1 tissue was obtained 10 years subsequent to her last clinical visit. The recovery of the eye donation was coordinated through the Foundation Fighting Blindness (FFB) Rare Eye Donor Program (Columbia, MD) (donation number #863). The histopathologic and immunocytochemical analysis was performed with the approval of the Cleveland Clinic Institutional Review Board (IRB #14-057).

For full details of the methods, instruments and analyses, please see the Supplementary material online.

\section*{RESULTS}

\subsection*{Clinical Findings}

The Stargardt patient was initially seen clinically by one of the authors (GAF) at age 31 years for the evaluation of decreased vision that had been noted since 1st grade. Visual acuity was best corrected to 20/300 in each eye. She was diagnosed as having Stargardt disease based upon her fundus appearance.

When last seen by GAF at age 55 years, best corrected visual acuity was 20/400 in the right eye and 8/225 in the left. Goldmann visual field testing showed a large central scotoma in each eye with normal peripheral boundaries to both II4e and V4e test targets. Her corneas and lenses were clear. Ocular pressures were 13 mmHg OD and 11 mmHg OS. There were extensive atrophic-appearing changes in the RPE and choroid within the macula with hypopigmented lesions throughout the posterior pole consistent with partially resorbed fundus flecks. Previous genetic testing identified two heterozygous mutations, p.Gly1961Glu and IVS46+2 C>G, in the ABCA4 gene, which were consistent with her clinical diagnosis of Stargardt disease.

\subsection*{In Vivo Imaging Analysis}

Fundus photographs of both eyes from the STGD patient showed severe degenerative changes of the retina (Figure 1). Images from the donor’s last ocular exam, 11 years prior to her death, showed a normal-appearing optic disc, prominent choroidal vessels, RPE atrophy (Figure 1A and B, arrowheads), and hyperpigmented areas in the perifoveal region (Figure 1A and B, arrows).

\subsection*{Ex-Vivo Imaging Analysis}

Images of the postmortem posterior globes similarly displayed prominent choroidal vessels due to RPE atrophy (Figure 1C and D, arrowheads) as well as hyperpigmented areas in the perifovea (Figure 1C and D, arrows). Scanning laser ophthalmoscopy (SLO) and spectral-domain optical coherence tomography (SD-OCT) imaging of the donor eyes were performed to characterize the retinal lesions of the STGD eyes. The optic nerve head (Supplementary Figure 1A–D, arrows – available online only) was clearly identified in each donor eye using all imaging modalities. SLO-IR imaging of the STGD eyes identified the hypopigmented macula as seen on the fundus image (Supplementary Figure 1B, arrowheads). SLO-AF imaging of STGD
eyes identified that the area surrounding the optic nerve and fovea showed evidence of RPE atrophy (Supplementary Figure 1D, arrowheads) compared to the control eyes (Supplementary Figure 1C). The area surrounding the optic nerve of the STGD eye showed atrophic changes of the RPE and the choroidal vessels, the latter is usually obscured by the RPE. Only the retinal vasculature was clearly visible in the control eyes.

Both the control and STGD eyes were also evaluated with SD-OCT imaging (Supplementary Figure 2 – available online only). The fovea (Supplementary Figure 2A, arrow) and optic nerve (Supplementary Figure 2A, ON) were clearly evident with SD-OCT en face imaging in the control eye. Several areas near the fovea and optic nerve in the STGD eyes showed degenerative changes in the retina (Supplementary Figure 2B). SD-OCT in-depth B-scans identified retinal changes including disorganization of retinal lamina and absence of the photoreceptor layer in the STGD eyes (Supplementary Figure 2D) when compared to the control eyes (Supplementary Figure 2C).

Histopathology

Semi-thin sections of epon-embedded tissue were analyzed and compared to age-similar controls in the perifoveal region (Figure 2A, regions 1 to 5) and periphery (Supplementary Figure 3 – available online only, region 6 in Figure 2A). A schematic drawing depicts the regions harvested and processed for observation in both the morphological and immunohistological assays (Figure 2A). These include: the distal (Figure 2A, regions 1, and 5) and proximal perifoveal regions (Figure 2A, regions 2, and 4), fovea (Figure 2A, region 3), and the periphery (Figure 2A, region 6). The fundus images from the STGD donor showed extensive macular atrophy overall. As a consequence, we focused our analysis on the fovea (Figure 2D, region 3 in Figure 2A) and the surrounding perifoveal regions (Figure 2C and E, regions 1 and 5 in Figure 2A). The retina of the control eye displayed each of the usual retinal lamina and the RPE. The retina of the STGD donor showed varying degrees of retinal changes in each of the regions studied when compared to control retina (Figure 2B). In the perifoveal region of the STGD donor (Figure 2C and E, regions 1 and 5 in Figure 2A), the outer nuclear layer and photoreceptors were absent and the number of nuclei across the inner nuclear layer was substantially reduced. Although the RPE was mostly absent from these areas with retinal changes, a few isolated RPE cells remained (Figure 2C, arrow). Bruch’s membrane (BM) was evident in these areas (Figure 2C and E, arrowheads).

FIGURE 1. Fundus photographs of both eyes from a Stargardt (STGD) patient. Images obtained when the STGD donor had her last ocular exam, 11 years prior to her death, show a normal-appearing optic disc, retinal vessels, and a well-circumscribed region within the macula that consisted of an atrophic change involving both the RPE and the choroid (A, B, outlined by arrowheads). Focal small hyperpigmented lesions within the circumscribed macular region were also observed (A, B, arrows). Similarly, images of fixed postmortem posterior globes showed atrophic changes of the RPE and choroidal vessels (outlined by arrowheads, C, D) in addition to small hyperpigmented lesions (C, D, arrows; *indicates retinal detachment). Bar = 0.5 cm.
The fovea (Figure 2D and region 3 in Figure 2A) was highly degenerated as evidenced by the paucity of photoreceptors and the disorganization of the surrounding retina where distinct retinal lamina are usually found. A large lipid-like droplet was also present in the choroid (Figure 2D, asterisk); BM was absent in this area.

Based on histology, the control retina was normal in morphology with distinct laminae in the periphery (Supplementary Figure 3A). In the STGD donor periphery (Supplementary Figure 3B), all the retinal layers were present, with some degenerative changes in the outer plexiform layer thickness. The RPE displayed normal thickness in the control sample (Supplementary Figure 3C) but it was reduced from normal thickness and displayed lack of pigment in the STGD donor (Supplementary Figure 3D).

Immunohistochemistry

To evaluate molecular changes associated with the pathology in this STGD donor, tissue from the regions described above were cryosectioned and prepared for immunocytochemistry. Initially, the distribution of the cone cytoplasmic marker 7G6 was evaluated in both
the STGD donor and an age-similar-control eye using samples from the perifoveal (Figure 3, regions 1 to 5 in Figure 2A) and peripheral locations (Supplementary Figure 4 – available online only, region 6 in Figure 2A). Using this cone-specific antibody, we observed substantial differences in labeling patterns between the STGD donor retina and the control sample. Control retinas labeled with cone arrestin antibody showed that arrestin was distributed along the entire conical-shaped plasma membrane, from the tip of the outer segment to the synaptic base. In contrast, red/green opsins were restricted to the outer segments of the cones (Figure 3A, arrows). A few cone arrestin-labeled cells were present in the distal perifoveal region of the STGD donor (Figure 3B). However, the red/green opsins were distributed throughout the entire cell body of these cells (Figure 3B, arrows). Cone-specific markers labeling was not observed in either the proximal perifoveal region (Figure 3C) or in the fovea (Figure 3D). The distal perifoveal region where the RPE was present displayed a few cone-labeled cells (Figure 3E). As seen in the plastic sections, the cryosections also showed absence of RPE, with preservation of BM (Figure 3C, arrowheads). The fovea was highly degenerated with loss of retinal lamina and absence of both the RPE and BM (Figure 3D). Arrestin-labeled cones with normal morphology were evident in the peripheral samples from the control retina (Supplementary Figure 4A and B). However, only stubby, degenerate arrestin-labeled cones were found in the periphery of the STGD donor (Supplementary Figure 4C and D). Label distribution of the red/green opsin immunoreactivity was present over the entire plasma membrane of cones labeled in the peripheral retinal sample of the STGD eyes, (Supplementary Figure 4C and D, arrows) while red/green opsin immunoreactivity was restricted to the cone outer segments in control retina (Supplementary Figure 4A and B, arrows).

Control retinas labeled with blue cone opsin antibodies displayed immunoreactivity restricted to the outer segment in perifoveal samples (Figure 3F, arrows). In contrast, blue cone opsin was present in the cell bodies (Figure 3J, arrow) of the cones of the STGD donor retina. Blue cone opsin-labeled cells were absent from the distal perifoveal region (Figure 3G), the proximal perifovea (Figure 3H), and the fovea (Figure 3I) of the STGD donor retina where the RPE was missing. However, a few atrophic blue opsin-labeled cells were still found in the distal perifoveal region of the STGD donor retina where RPE was present (Figure 3I). Müller cells were labeled to some extent with the GFAP antibody. The GFAP-labeled cytoplasmic filaments in Müller cells were not detected in the perifoveal region of the control donor retina (Figure 3F). The Müller cells were hypertrophic and were observed in the inner retina of the distal perifoveal region of the STGD donor (Figure 3G), where the RPE was absent. However, extensive GFAP immunoreactivity was present in the retinal samples from the proximal perifoveal region (Figure 3H) and in the fovea (Figure 3I) of the STGD donor retina. GFAP immunoreactivity was also observed in the distal perifoveal region where the RPE was still present (Figure 3J). While blue cone opsin is restricted to the outer segments of the cones in the control (Supplementary Figure 5A and B, arrows – available online only) it was not in the STGD donor retina in the periphery (Supplementary Figure 5C and D, arrows). In this area in the STGD donor retina, the Müller cells had undergone reactive gliosis throughout the retina and their hypertrophic processes were GFAP positive (Supplementary Figure 5C and D, arrows) but not in the control retina (Supplementary Figure 5A and B).

The rod outer segments were visualized through labeling with rhodopsin antibodies. Control retinas labeled with rhodopsin antibody displayed restricted distribution of this protein to the outer segment of rods in the perifoveal region of the control donor (Figure 3K, arrows). In the STGD donor retina, rhodopsin-labeled cells were decreased, stubby and rhodopsin distribution was not restricted to the outer segments of the cells in most of the distal perifoveal region (Figure 3L, arrows). In the proximal perifoveal region (Figure 3M, arrows) and in the fovea (Figure 3N, arrows) rhodopsin-labeled cells were almost completely absent with the presence of a few clearly disorganized and morphologically different cells. A few rhodopsin-labeled cells were still found in the distal perifoveal region of the STGD donor retina where the RPE was present (Figure 3O). Calbindin D labeling in the control retina was present in sparse neurons in the ganglion cell layer, in amacrine, bipolar and cones in the perifoveal region (Figure 3K). However, in the STGD donor, less calbindin D-positive cells were observed in the distal perifoveal region and they were observed scattered throughout the entire retina (Figure 3L and O). In the proximal perifoveal region (Figure 3M) and in the fovea (Figure 3N) calbindin D labeled cells were not present. In the periphery, both control (Supplementary Figure 6A and B – available online only) and STGD (Supplementary Figure 6C and D) retinas labeled with rhodopsin antibody displayed restricted distribution of this protein to the outer segment of rods. Interestingly, calbindin D-positive cells in the control retina (Supplementary Figure 6A and B) labeled cones, cells in the outer plexiform layer and sparse neurons in the ganglion cell layer. In the STGD donor retina (Suppl. Fig. 6C and D, arrowheads) calbindin D labeling was increased in all layers and also identified the presence of stubby cones.

Stargardt disease is characterized by excessive accumulation of the blue-shifted autofluorescence...
FIGURE 3. Immunolocalization of red/green and blue cone opsins, cone arrestin, rhodopsin and GFAP in the central region of the Stargardt disease (STGD) retina. Cryosections of both the STGD (B–T) and an age-similar-control (A, F, K, P, P') retinas were labeled with antibodies specific to cone arrestin marker 7G6, blue cone opsin and rhodopsin (green) and the red/green cone opsins (red). Cell nuclei were labeled with TO-PRO-3 (blue). Control retinas (A) labeled with cone arrestin antibodies displayed distribution from the tip of the outer segment to the synaptic base. In contrast, red/green (A) and blue cone (F) opsins, and rhodopsin (K) were restricted to the outer segments of the cones (arrows); no GFAP-labeled filaments were observed (F). The distal perifoveal region of the STGD donor was characterized by the presence of a few cone arrestin-labeled cells (B, E), an almost complete absence of blue cone opsin (G, J), the decreased presence of rhodopsin-labeled cells, with the resulting cells displaying stubby and unrestricted rhodopsin distribution (L, O) and hypertrophic Müller cells labeled with GFAP (G, J). The red/green opsins continued
lipo/fuscin granules in the RPE cytoplasm. Therefore, autofluorescent material in the RPE of the perifoveal region (Figure 3P to T) and peripheral locations (Supplementary Figure 7–available online only) were analyzed and compared to a control. RPE from age-similar control eyes (Figure 3P’) showed the presence of autofluorescent granules in the cytoplasm. The RPE of the STGD donor was hypertrophic and displayed significantly decreased autofluorescent granules in the distal perifoveal region (Figure 3Q and T, bracket). RPE was absent in the proximal perifoveal region (Figure 3R) and in the fovea (Figure 3S) of the STGD eye. Control retinas also displayed weak cytoplasmic autofluorescence in the photoreceptor inner and outer segments that were detached from the RPE during tissue processing (Figure 3P). Interestingly, several large autofluorescent granules were observed in the STGD donor’s inner retina in both the distal (Figure 3Q and T, arrows) and proximal perifoveal locations (Figure 3R, arrows). In the periphery, even though the age-similar control RPE displayed abundant autofluorescent granules (Supplementary Figure 7A and B), the RPE of the STGD donor showed an increased accumulation of autofluorescent granules (Supplementary Figure 7C and D).

Morphological and Ultrastructural Pathology

The ultrastructure of RPE and Bruch’s membrane in the perifoveal region of the control and STGD donors were analyzed by TEM. Control RPE displayed photoreceptor outer segments opposed to the RPE apical surface (Figure 4A). In the STGD donor, RPE cells were observed in direct contact with rod nuclei in some areas (Figure 4B, RN). The basal surface of the control RPE contained numerous basal infoldings (Figure 4A, BI) but in the STGD eye, the basal surface of the RPE was relatively smooth, with little evidence of basal infoldings (Figure 4B). The cytoplasm of the control RPE contained lipo/fuscin (Figure 4C, Lip) and a few melanin granules (Figure 4C, MG). In contrast, the cytoplasm of the STGD donor RPE was filled with lipo/fuscin and melanolipo/fuscin granules (Figure 4D).

The BM of the control donor displayed typical pentalaminar structure (Figure 4E) while the STGD BM was disorganized and thicker than that of the control (Figure 4F). The RPE basal surface in the control eye showed close interaction with the BM, which is also the interacting matrix for the blood supplying choriocapillaris (Figure 4G). In contrast, the STGD donor eye displayed areas where RPE was absent but the subjacent choriocapillaris remained (Figure 4H).

DISCUSSION

Of the two heterozygous mutations in the *ABCA4* gene observed in our patient, the p.Gly1961Glu mutation has been observed previously. It is the most common mutation detected in *ABCA4* with a frequency that varies from approximately 0.2% in Europeans to approximately 10% in East African populations. In addition, this mutation has also been identified in patients with autosomal recessive cone–rod dystrophy and age-related macular degeneration.

A recent report classified the severity of phenotypes in individuals carrying homozygous p.Gly1961Glu mutations as mild to moderate based on clinical characteristics including: age of onset; the minimum angle of visual acuity resolution; fundus appearance; autofluorescence pattern; and ERG characteristics. Additional reports also indicate that patients homozygous for this mutation usually have a milder form of the disease, with more severe phenotypes linked to the presence of a third or fourth *ABCA4* mutation.

The fundus of the STGD patient analyzed here displayed significant RPE atrophy with a predilection to occur within the perifoveal region, consistent with previous reports indicating that the p.Gly1961Glu mutation is associated with anatomical and functional pathologies more notable to this location. Previous studies reported that STGD patients carrying homozygous p.Gly1961Glu mutations had localized dysfunction confined to the macula and central fovea, accompanied by reduced retinal thickness in these regions as measured by OCT. In addition, OCT scans were distributed throughout the entire body of the cells (B, arrows) in this area. Cone-specific markers and rhodopsin labeling was not observed in the fovea (D, I, N) and in the proximal perifoveal region (C, H); a few disorganized rhodopsin-labeled cells were present in the proximal perifoveal region (M, arrows). RPE from the STGD donor was hypertrophic and displayed significantly decreased autofluorescent granules in the distal perifoveal region (Q, T, bracket) when compared to RPE in an age-similar control eyes (P’). Control retinas also displayed weak, mostly cytoplasmic autofluorescence in the photoreceptor inner and outer segments detached from the top of the RPE (P). RPE was absent in the fovea (S) and in the proximal perifoveal region (R). Several autofluorescent granules were observed in the STGD donor inner retina in the distal (Q, T, arrows) and in the proximal perifoveal regions (R, arrows). In the proximal perifovea (C, H, M, R) and partially in the fovea (D, I, N, S, arrowheads), BM was evident. The individual images are differential interference contrast (DIC) microscopy overlaid with the immunofluorescence labeling. INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; Ph, photoreceptors; RPE, retinal pigment epithelium. Bar = 40 μm.
FIGURE 4. Ultrastructural analysis of RPE degeneration in the Stargardt disease (STGD) donor’s retina. The control RPE eye displayed photoreceptor outer segments lying in contact with the RPE apical surface (A). In the STGD donor, RPE cells are observed in direct contact with rod nuclei in some areas (B, RN). The basal surface of the control RPE elaborated numerous basal infoldings (A, BI) but the STGD basal surface showed an absence of these structures (B). The cytoplasm of the control RPE contained lipofuscin (C, Lip) and a few melanin granules (C, MG). In contrast, the cytoplasm of the STGD donor RPE was filled with lipofuscin and melanolipofuscin granules (D, MLF). The BM of the control donor displayed typical pentalaminar structure (E) while the STGD BM was disorganized and thicker than that of the control (F). In the control eye the RPE basal surface was interacting with the BM (G). In contrast, the STGD donor eye displayed areas where RPE was absent but the subjacent choriocapillaris remained (H). N, nucleus; BI, basal infoldings; MG, melanin granules; Lip, lipofuscin; MLF, melanolipofuscin; CC, choriocapillaris; RPEBM, RPE basement membrane; ICL, inner collagenous layer; MEL, middle elastic layer; OCL, outer collagenous layer; EBM, choroidal endothelial cell basement membrane; RN, rod nuclei. Bars = 2 μm.
of STGD patients heterozygous for the p.Gly1961Glu mutation showed extensive loss of outer retinal layers in regions with subjacent RPE atrophy.28 OCT B-scans of the STGD donor analyzed here displayed structural differences in the retina that suggested disorganization and absence of a photoreceptor layer in the fovea and surrounding perifovea.

RPE lipofuscin was measured \textit{in vivo} with fundus autofluorescence using SLO imaging. The STGD donor analyzed here displayed central macular atrophy and decreased foveal autofluorescence on SLO imaging, indicative of RPE atrophy. Our data are consistent with previous reports of STGD patients,28,29 including those carrying the p.Gly1961Glu mutation.3,15,27 Longitudinal studies of SGTD patients reported progressive increases in autofluorescence followed by reduced autofluorescence in the perifoveal region.2,28,30 The RPE in the donor eye studied here showed an abundance of lipofuscin in the areas where the RPE remained. Our analysis of cryosections revealed higher levels of autofluorescence in the RPE in the periphery of this STGD donor eye. Lower levels of autofluorescence in the fovea and perifovea were probably due to RPE atrophy in the region.

Lipofuscin granules are fluorescent, heterologous waste material that accumulates with age in a variety of postmitotic cells, but are particularly prominent in the RPE.31–33 They contain primarily lipid soluble material with less than 1% protein.33 Much of the lipofuscin fluorescence comes from A2E (N-retinylethanolamin), which contains two vitamin A derivatives covalently linked to ethanolamine. The relative amount of lipofuscin accumulation in the RPE is associated with at least a partially functioning, albeit dysfunctional, retinoid cycle. In this regard, it is notable that lipofuscin is significantly reduced in mice lacking the retinol isomerase (RPE65) that generates 11-cis-retinol34 and also in animals treated with reagents that disrupt the visual cycle or that reduce serum vitamin A.35–38

The abundance of lipofuscin in the RPE of STGD individuals has been reported to result from the absence of a functional ABCA4, resulting in the delivery of large amounts of all-trans retinoid within the shed tips of outer segment debris that is phagocytized by the RPE. In contrast, in normal individuals, retinoids are transported within the outer segment discs by a functional ABCA4 and moved to the RPE for eventual conversion to the 11-cis-configuration. Thus, in visually normal individuals, the phagocytized shed tips contain lower retinoid levels compared to individuals with STGD. The arrival of altered retinoids associated with outer segment debris reaching the RPE by way of the phagosome appears to be the cause of the higher levels of lipofuscin present in the RPE in individuals with this disease.

It has been reported that the p.Gly1961Glu mutation is expected to cause decreased ATP binding and ATPase activity of the ABCA4 transporter found in both rods and cones.39 However, little is known about how ABCA4 mutations lead to degeneration of the retina and RPE. In our donor’s eyes, degenerative changes were more severe in cones than in rods. Whether this reflects more sensitivity of cones to the mutation, or whether the lipofuscin debris is more deleterious to cones than to rods cannot be distinguished from these observations.

In the retina studied here, a few cone opsin-labeled cells were present in the distal perifoveal region. These cells displayed the red/green opsins distributed throughout the cell body. Previous analysis of mice models40 and of retinas from eyes of donors with several retinal degenerations suggests that mislocalization of cone opsins are an early event and may precede cone cell death.41–44 In addition, cone-specific labeling was not observed in the fovea or in the proximal perifoveal region, indicating that cones have been lost from these locations. Our results are in agreement with a previous study that analyzed patients with STGD with well-defined atrophic macular lesions.29 Another study aimed to investigate the correlation between macular cone structure, fundus autofluorescence, and visual functions in patients with STGD.28 A report by Chen and colleagues in 2011 provided “a model of progression in STGD which lipofuscin accumulation results in homogeneously increased autofluorescence with cone spacing abnormalities, followed by heterogeneously increased autofluorescence with cone loss, then reduced autofluorescence with cone and RPE cell death”.28 These conclusions are supported by the observation that the lipofuscin fluorophores, A2E and A2PE-H\textsubscript{2}, are markedly elevated in the RPE of postmortem eyes from STGD patients45 and in the abcr−− mouse model of STGD.46 The A2E cytotoxicity in RPE cells is well documented and is assumed to occur through a series of biochemical reactions, cellular interactions and genetic activation that ultimately leads to RPE and overlying photoreceptor cell death.47–52 Our ultrastructural observation of the STGD donor RPE showed that lipofuscin and melanolipofuscin granules were substantially increased in the RPE cytoplasm in the perifoveal region, where RPE was present but cones were significantly decreased. These data suggest that cone degeneration and death are associated with the accumulation of lipofuscin in the RPE.

OCT imaging identified disruptions in Bruch’s membrane of STGD patients carrying compound heterozygous for the p.His1406Tyr and p.Gly1961Glu mutations in the ABCA4 gene.53 We found Bruch’s membrane loss in the fovea using histology and cryosectioning methods. The ultrastructural analysis of the STGD donor identified increased
thickening of Bruch’s membrane, particularly in the central elastin lamina. This observation is consistent with studies of the abca4−/− mouse, which showed that they exhibit a 2-fold increase in Bruch’s membrane thickness.54

A previous histopathologic study from donor eyes of a STGD patient (genotype unknown) showed elevated levels of lipofuscin in the peripheral RPE and in surviving photoreceptor inner segments. This same study also found loss of RPE in the macula and Muller cell hypertrophy. In addition, degenerated rods and cones with abnormal structure, but qualitatively normal immunoreactivity to rod- and cone-specific markers, were observed.55

In conclusion, we correlated the clinical, genetic, histopathologic and immunocytochemical findings in donor eyes from a patient with Stargardt disease due to ABCA4 mutations. Overall, the retina was severely degenerated. A few surviving cones were present in the distal perifoveal region but were absent in the fovea. In contrast, more rods were present in the perifovea and a few disorganized rhodopsin-labeled cells were still present in the fovea. Finally, RPE was absent below the fovea but present in the distal perifoveal region. Previous reports suggest that the p.Gly1961Glu mutation leads to a less severe phenotype. It is likely that the severity of the phenotype of this STGD donor is due to the presence of compound heterozygous mutations, in which the IVS46 + 2C > G mutation is more deleterious.

ACKNOWLEDGEMENTS

The authors thank Dr Peter MacLeish (Morehouse School of Medicine, Atlanta, GA) for providing us with the antibody to cone cytoplasmic marker (7G6), and Dr Grazyna Adamus, (Oregon Health and Science University, Portland, OR) for providing us with the antibody to rhodopsin (B6-30N).

DECLARATION OF INTEREST

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

The Foundation Fighting Blindness, Columbia, MD, Research to Prevent Blindness, Wolf Family Foundation, The Llura & Gordon Gund Foundation and National Eye Institute supported this work.

REFERENCES

Retinal Histopathology due to ABCA4 Mutations

DJ-1-Dependent Regulation of Oxidative Stress in the Retinal Pigment Epithelium (RPE)

Karen G. Shadrach, Mary E. Rayborn, Joe G. Hollyfield, Vera L. Bonilha

Department of Ophthalmic Research, The Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America

Abstract

Background: DJ-1 is found in many tissues, including the brain, where it has been extensively studied due to its association with Parkinson’s disease. DJ-1 functions as a redox-sensitive molecular chaperone and transcription regulator that robustly protects cells from oxidative stress.

Methodology: Retinal pigment epithelial (RPE) cultures were treated with H2O2 for various times followed by biochemical and immunohistological analysis. Cells were transfected with adenoviruses carrying the full-length human DJ-1 cDNA and a mutant construct, which has the cysteine residues at amino acid 46, 53 and 106 mutated to serine (C to S) prior to stress experiments. DJ-1 localization, levels of expression and reactive oxygen species (ROS) generation were also analyzed in cells expressing exogenous DJ-1 under baseline and oxidative stress conditions. The presence of DJ-1 and oxidized DJ-1 was evaluated in human RPE total lysates. The distribution of DJ-1 was assessed in AMD and non-AMD cryosectionss and in isolated human Bruch’s membrane (BM)/choroid from AMD eyes.

Principal Findings: DJ-1 in RPE cells under baseline conditions, displays a diffuse cytoplasmic and nuclear staining. After oxidative challenge, more DJ-1 was associated with mitochondria. Increasing concentrations of H2O2 resulted in a dose-dependent increase in DJ-1. Overexpression of DJ-1 but not the C to S mutant prior to exposure to oxidative stress led to significant decrease in the generation of ROS. DJ-1 and oxDJ-1 intensity of immunoreactivity was significantly higher in the RPE lysates from AMD eyes. More DJ-1 was localized to RPE cells from AMD donors with geographic atrophy and DJ-1 was also present in isolated human BM/choroid from AMD eyes.

Conclusions/Significance: DJ-1 regulates RPE responses to oxidative stress. Most importantly, increased DJ-1 expression prior to oxidative stress leads to decreased generation of ROS, which will be relevant for future studies of AMD since oxidative stress is a known factor affecting this disease.

Introduction

The retinal pigment epithelium (RPE) constitutes a monolayer of cuboidal cells. Its apical surface faces a very complex extracellular matrix called the interphotoreceptor matrix (IPM) that also surrounds the photoreceptor cells projecting from the outer retina. The RPE basal surface faces the underlying Bruch’s membrane (BM) [1]. The RPE exhibit a number of highly specialized functions, including phagocytosis of shed tips of photoreceptor outer segments, directional transport of nutrients into and removal of waste products from photoreceptor cells, optimization of ion concentrations in the surrounding tissues, elimination of fluid from the IPM, and visual pigment regeneration and transport which, is essential to retinal homeostasis and vision.

The RPE cells live under chronic oxidative stress because of the lifelong exposure to light, high oxygen consumption and high oxygen partial pressure from the underlying choriocapillaris. In addition, phagocytosed shed photoreceptor outer segments are enriched in polyunsaturated fatty acids such as docosahexaenoate (DHA) and retinoids, which are highly susceptible to lipid peroxidation and fragmentation leading to lipid peroxide-derived protein modifications [2,3]. Finally, phagocytosis itself increases oxidative stress resulting in the generation of endogenous reactive oxygen species (ROS) [4,5]. This hostile oxidative environment is thought to contribute to retinal disease. Indeed, it was suggested that oxidative stress affecting the physiological function and leading to focal loss of the RPE cells is a major factor contributing to geographic atrophy, and vision loss in the elderly blinding disease age-related macular degeneration (AMD) [6,7]. However, it remains to be determined why the initial retinal degeneration occurs and how degeneration processes progress as a result of continued oxidative insults.

Deletion or homozygous mutations of DJ-1 gene (PARK7 locus) have been shown to cause early-onset autosomal recessive Parkinson’s disease (PD) [8]. The DJ-1 gene encodes a highly conserved protein with 189 amino acids and a molecular weight of ~20 kDa. DJ-1 has been implicated in diverse cellular processes,
including cellular transformation and tumorigenesis [9,10,11], transcriptional regulation [12,13,14,15], androgen receptor signaling [16], chaperone [17,10], spermatogenesis [19], and oxidative stress response [20,21,22].

Oxidative stress occurs when there is an imbalance between the biochemical processes that produce ROS and the protective mechanisms within cells that scavenge ROS. Several studies have demonstrated that DJ-1 robustly protects cells from oxidative stress through distinct cellular pathways [20,21,23,24,25,26,27,28,29]. DJ-1 can eliminate H$_2$O$_2$ by becoming oxidized itself and thus functioning as a scavenger of ROS [20,21,30,31]. It was also proposed that some of the protective actions of DJ-1 might occur at the transcriptional level [32]. DJ-1 binds to PIAS proteins, a family of SUMO-1 ligases that modulate the activity of various transcription factors [16]. Wild-type DJ-1 sequesters the death protein Daxx in the nucleus, preventing it from binding and activating its effector kinase, apoptosis signal-regulating kinase 1 (Ask1) in the cytoplasm [33]. Others showed that DJ-1 is a transcriptional co-activator that interacts with the nuclear proteins p34nrb and PSF [34] again to protect against apoptosis. DJ-1 also stabilizes the antioxidant transcriptional master regulator nuclear factor erythroid-2 related factor 2 (Nrf2) [15,35] by preventing association with its inhibitor protein Keap1. Therefore, DJ-1 may act as a transcriptional co-factor that regulates the response to oxidative stress. DJ-1 has also been reported to confer protection against endoplasmic reticulum (ER) stress, peroxisomal inhibition, and toxicity induced by overexpression of Pael-R [36]. Recently reported data showed that the apparently pleiotropic roles of DJ-1 seem to be related to the single function of binding multiple mRNA transcripts with a GG/CC-rich sequence [37]. Moreover, overexpression of the gene encoding DJ-1 protects against oxidative injury whereas knocking down the expression by RNAi enhances susceptibility to oxidative stress [21,36,39,40,41,42,43]. Thus, DJ-1 may play a crucial role both sensing and conferring protection against a range of oxidative stressors, through multiple mechanisms.

Previously, we have identified DJ-1 peptides in both young and aged RPE lysates using a proteomic approach [44]. In this study, we describe DJ-1 expression, distribution and function in RPE cells under baseline conditions and following oxidative stress. We also analyze DJ-1 and oxDJ-1 levels in human RPE lysates from non-AMD and AMD donors. Finally, we describe DJ-1 distribution in the RPE from non-AMD and AMD donors with geographic atrophy, and in isolated human BM/choroid (with drusen) from AMD eyes. Adaptation to changes in oxidative environments is critical for the survival of retina and the RPE. Therefore, knowledge of the DJ-1 function in oxidative stress in the RPE will provide insight into biochemical processes that support and maintain vision in physiological and pathological conditions.

Results

DJ-1 Expression and Distribution in RPE Cell Cultures

Recently, we identified DJ-1 peptides in both young and aged RPE lysates using proteomic analysis [44]. To decipher the molecular mechanism of DJ-1 function we decided to use several previously characterized RPE cell cultures. One was the newly characterized B6-RPE07 mouse RPE cell line, capable of displaying a polarized phenotype when cultured in a serum free epithelial medium and plated on collagen-coated Transwells [45]. We also used two human RPE cell lines: ARPE-19 and D407. We also used mouse primary RPE cultures, which morphologically resemble RPE cells in vivo due to their elaboration of apical microvilli and basal infoldings on their surfaces [46]. The initial characterization of these four cell lines analyzed the expression of DJ-1 by Western analysis (Fig. 1A and B) and immunofluorescence (Fig. 1C to F). A major band of ~25 kDa was observed in the extracts of all the RPE cell lines (Fig. 1A, lanes 1 to 3) and mouse primary RPE (Fig. 1A, lane 5) when compared to extracts from mouse brain (Fig. 1A, lane 4). Immunoblots of RPE lysates obtained from all cell cultures demonstrated heterogeneity in the levels of expression of DJ-1 when compared to the expression of the loading control protein GAPDH (Fig. 1B). DJ-1 expression in mouse primary RPE lysates displayed the highest levels of expression of DJ-1 among the RPE cells tested (Fig. 1A, lane 5).

Confocal microscopy *en face* examination of paraformaldehyde-fixed monolayers grown on polycarbonate filters revealed that under baseline conditions, DJ-1 displays a diffuse cytoplasmic and, in some cells, nuclear staining (Fig. 1C to F, arrows) in all the RPE cell lines analyzed. DJ-1 analysis in polarized RPE monolayers established that although each one of the RPE cell cultures have different levels of DJ-1, they all display similar subcellular distribution of DJ-1.

DJ-1 Expression in RPE Cells Subjected to Oxidative Stress

To evaluate the role of oxidative stress on DJ-1 expression, RPE cultures were plated, incubated with H$_2$O$_2$ and the expression and distribution of DJ-1 was analyzed (Fig. 2). A representative Western is shown. A dose response relating DJ-1 expression in ARPE-19 (Fig. 2A, lanes 1 to 6) and D407 (Fig. 2A, lanes 7 to 12) is observed when cells are exposed to increasing concentrations of H$_2$O$_2$ for 1 hr. While exposure of ARPE-19 cells to H$_2$O$_2$ at 400 μM was sufficient to significantly enhance DJ-1 levels, a lower concentration (100 μM) was adequate to modulate DJ-1 levels in D407 cells. Quantitation of the intensity of immunoreactivity in blots from three independent experiments showed that DJ-1 increased 5.0 and 3.6 fold in ARPE-19 incubated with 400 and 600 μM H$_2$O$_2$ and up to 5.7 fold in D407 cells incubated with 200 μM H$_2$O$_2$ when compared with control cell RPE cultures (Fig. 2C). Similarly, both ARPE-19 (Fig. 2B, lanes 13 to 18) and D407 (Fig. 2B, lanes 19 to 24) also displayed a dose response when cells were exposed to increasing concentrations of H$_2$O$_2$ for 18 hrs. Quantitation of these blots showed that the intensity of DJ-1 immunoreactivity was 1.4, 1.3 and 1.8 fold higher in ARPE-19 incubated with 400 and 800 μM H$_2$O$_2$ and up to 1.6 fold greater in D407 cells incubated with 100 to 800 mM H$_2$O$_2$ when compared with control cell RPE cultures (Fig. 2D). Finally, ARPE-19 and D407 monolayers exposed to oxidative stress induced by incubation with increasing concentration of 4-hydroxynonenal (4-HNE), a lipid peroxidation product, for 12 (Figure S1) and 24 hrs (data not shown) also displayed increased DJ-1 immunoreactivity.

We also analyzed the distribution of DJ-1 in several RPE cell cultures plated on Transwell inserts non-incubated or incubated with 100 μM H$_2$O$_2$ overnight followed by immunofluorescence (Fig. 2E to J). Confocal microscopy *en face* examination of paraformaldehyde-fixed monolayers revealed a diffuse staining for DJ-1 consistent with a cytoplasmic localization in ARPE-19 (Fig. 2E), B6-RPE07 (Fig. 2G) and in mouse primary RPE (Fig. 2I) monolayers under baseline conditions. Oxidative stress induced by H$_2$O$_2$ leads to a visible increase in immunocytochemical staining for DJ-1 (Fig. 2F, H, J). In addition, to this visible increase in DJ-1 staining, an induced intracellular redistribution of DJ-1 to an aggregated, perinuclear localization was also observed (Fig. 2F, H, J). Our results suggested that DJ-1 immunoreactivity is increased and redistributed within RPE cells subjected to oxidative stress.
Further experiments were carried out in several RPE cultures plated on Transwell inserts non-incubated or incubated with 100 μM H₂O₂ overnight followed by immunofluorescence to confirm the intracellular localization of DJ-1 upon oxidative injury (Fig. 3). Confocal microscopy en face examination of paraformaldehyde-fixed monolayers again revealed a diffuse staining for DJ-1 consistent with a cytoplasmic localization in mouse primary RPE (Fig. 3A) and in ARPE-19 (Fig. 2G) monolayers. Monolayers were also labeled with antibodies specific to the mitochondrial marker OxPhos Complex IV subunit I (COX IV, Fig. 3B, E, H, K). Under baseline conditions, both RPE monolayers displayed no
significant colocalization with the mitochondrial marker in overlaid images (Fig. 3C and I). Oxidative stress induced by H$_2$O$_2$ lead to a visible increase in immunocytochemical staining for DJ-1 (Fig. 3D and J). In addition, an intracellular redistribution of DJ-1 immunoreactivity leading to COX IV colocalization was also observed (Fig. 3F and L).

Additional experiments carried out in RPE cells plated on coverslips and incubated with the mitochondrial staining MitoTracker were also performed (Figure S2). B6-RPE07 monolayers were fixed and labeled for DJ-1 (Figure S2A and S2D) after loading with the mitochondrial staining MitoTracker (Figure S2B and S2E). Similar to results reported above with antibody labeling, DJ-1 showed little specific localization to mitochondria under baseline conditions (Figure S2A and S2C). However, treatment with H$_2$O$_2$ caused increased redistribution of DJ-1 to mitochondria as shown in the overlain images (Figure S2D and S2F, arrows). In addition, an increase in mitochondria labeling is also evident in the RPE cells subjected to oxidative stress. Together, our observations indicate that DJ-1 is redistributed to the mitochondria in RPE cells under oxidative stress.

Detection of DJ-1 Oxidation at Cysteine 106 (oxDJ-1) in Cells Subjected to Oxidative Stress

DJ-1 has three cysteine (C) residues at amino acids 46, 53 and 106. C106 in DJ-1 is the first to become oxidized by the addition of cysteine sulfenic acid (C-SO$_2$H) and then C46 and C53 become oxidized upon oxidative stress, resulting in scavenging of reactive oxidative species (ROS) and enhancing DJ-1 association with mitochondria [23,47,48]. To check for alterations in DJ-1 oxidative stress, ARPE-19 cultures at baseline and under oxidative stress conditions were reacted with an antibody generated against a synthetic peptide containing SO$_2$H at C106 of DJ-1 [19]. If RPE cells under stress generate DJ-1 oxidized at C106, it may be increased during this time. Immunoblots of lysates of ARPE-19 cells obtained from cultures subjected to oxidative stress induced by exposure to H$_2$O$_2$ for 1 hr (Fig. 4A) and 18 hrs (Fig. 4B) demonstrated a progressive increase in oxDJ-1 with a dose response increase in cultures under short-term oxidative stress (Fig. 4A). Interestingly, the oxDJ-1 detected mostly in cultures under oxidative stress, displayed a molecular weight ~110 kDa. We also tested ARPE-19 cultures for the expression of oxDJ-1 by immunofluorescence (Fig. 4C to E). Polarized monolayers plated on Transwells under baseline culture conditions failed to display labeling with the antibody to oxDJ-1 (Fig. 4C). However, several cells displayed staining with the antibody to oxDJ-1 when monolayers were incubated with H$_2$O$_2$ for 1 h (Fig. 4D) and 18 hrs (Fig. 4E). The large increase of oxDJ-1 content when RPE cultures were under oxidative stress suggests that this DJ-1 in RPE indeed undergoes oxidation under oxidative stress.

Regulation and Distribution of DJ-1 Oxidation at C Residues in Cells Subjected to Oxidative Stress

The above data suggested that oxidation of DJ-1-C residues is correlated to the presence of oxidative stress. To further understand the function of DJ-1 oxidation RPE cultures were infected with adenoviruses carrying full-length human DJ-1 (hDJ-1 Ad) and a mutant construct, which has the C residues at amino acids 46, 53 and 106 mutated to serine (S), (C to S Ad) prior to stress experiments followed by evaluation of content and localization of DJ-1 in RPE cultures (Fig. 5).

Immunoblots of lysates revealed that ARPE-19 cultures transduced with the hDJ-1 (Fig. 5A, lane 3) and with the C to S Ad constructs (Fig. 5, lane 2) displayed significant increased immunoreactivity of DJ-1 when compared to ARPE-19 control cultures (Fig. 5A, lane 1) and normalized to the levels of GAPDH (Fig. 5B) under baseline conditions. Quantification of these lysates demonstrated a 1.6 and 1.8 fold increase in the content of DJ-1 in ARPE-19 transduced with the C to S and hDJ-1 Ad, respectively (Fig. 5C), when comparing DJ-1 immunoreactivity to the one of ARPE-19 with normal levels of DJ-1. In addition, a significant increase in the immunoreactivity of DJ-1 was observed when ARPE-19 cultures were subjected to oxidative stress induced by H$_2$O$_2$ (Fig. 5A, +H$_2$O$_2$). Quantification of the immunoblots of these lysates demonstrated a 2.8, 1.4 and 4.8 fold increase in the immunoreactivity of DJ-1 in ARPE-19 cells and in ARPE-19 cells transduced with the C to S and hDJ-1 Ad, respectively (Fig. 5C), when comparing signal intensities to the one of ARPE-19 DJ-1 levels in baseline culture conditions.

To compare the distribution of endogenous and exogenous DJ-1 under baseline and oxidative stress conditions, ARPE-19 cells and ARPE-19 cells transducing exogenous DJ-1 were fixed and labeled for the distribution of DJ-1 and mitochondria (Fig. 5D to I). Double labeling cells on Transwells with antibodies to DJ-1 (green) and the mitochondria protein COX IV (red) showed little colocalization of DJ-1 with COX IV in control ARPE-19 cultures (Fig. 5D) and in ARPE-19 overexpressing full-length DJ-1 (Fig. 5E) and the C to S mutant DJ-1 (Fig. 5F) under baseline culture conditions. However, a significant colocalization of DJ-1 with COX IV could be observed in ARPE-19 cells (Fig. 5G and inset) and ARPE-19 cultures overexpressing full-length DJ-1 (Fig. 5H and inset) when incubated with H$_2$O$_2$. Opposing, ARPE-19 cultures overexpressing the C to S mutant DJ showed no
Figure 3. Oxidative stress-dependent translocation of DJ-1 into mitochondria. Representative confocal micrographs of mouse primary RPE (A–F) and ARPE-19 (G–L) monolayers plated on Transwells® and labeled with antibodies to DJ-1 (A, D, G, J) and COX IV (B, E, H, K). Under baseline conditions, there is very little colocalization between DJ-1 and COX IV, as observed in overlaid images (C, I) for both RPE cultures; DJ-1 is mostly distributed through the cytoplasm (arrows) and to the nuclei (*) of some cells. Upon oxidative stress induced by incubation with 400 μM H₂O₂ for 1 hr, DJ-1 staining is increased both in the mouse primary (D) and ARPE-19 (J) cultures. In cultures treated with H₂O₂ some DJ-1 re-distributed to mitochondria (arrowheads) and displayed significant colocalization with COX IV in overlaid images (F, L). Scale bar = 10 μm.

doi:10.1371/journal.pone.0067983.g003
colocalization between the distribution of DJ-1 and COX IV (Figure 5I and inset) under oxidative stress. Altogether, our results showed that DJ-1 C residues are important for their increased response and redistribution to the mitochondria in cells subjected to oxidative stress.

Functional Role of DJ-1 C Oxidation in Cells Subjected to Oxidative Stress

To determine whether DJ-1 oxidation at its C residues could protect RPE cells against oxidative stress, we subjected ARPE-19 cells and ARPE-19 cells overexpressing full-length and C to S mutant DJ-1 to oxidative stress induced by H2O2 and labeling of ROS generation through to incubation with CM-H2DCFDA (Fig. 6). No ROS were observed in ARPE-19 cells under normal culture conditions (Fig. 6A). However, significant intracellular ROS generation was observed when ARPE-19 cells were exposed to oxidative stress. Strikingly, no ROS was generated when ARPE-19 monolayers were overexpressing the full length DJ-1 (Fig. 6D). An inverse dose response of ARPE-19 monolayers overexpressing full length DJ-1 was observed when cells were infected with decreasing concentrations of hDJ-1 adenovirus (Fig. 6E and F), suggesting a gene-dosage effect. These results suggested that DJ-1 C oxidation is necessary for DJ-1 to protect RPE cells under oxidative stress from the intracellular generation of ROS.

Detection of DJ-1 in Human RPE Cells Isolated from the Eyes from AMD and non-AMD Donors

To better understand the significance of our RPE culture findings, DJ-1 presence in RPE lysates isolated from human donor eyes was carried out. DJ-1 presence was also probed in RPE cells isolated from donors with AMD, a blinding disease affecting the elderly, with an established contribution of oxidative stress to the pathogenesis of the disease (Fig. 7). DJ-1 was detected and highly expressed in the RPE lysates from AMD donors (Fig. 7A, lanes 6 to 10) when compared to the RPE lysates from non-AMD donors (Fig. 7A, lanes 1 to 5). DJ-1 immunoreactivity was normalized to the GAPDH content of the samples (Fig. 7C). Quantitation of these blots showed that DJ-1 immunoreactivity was increased ~2.5 fold in RPE isolated from AMD donors when compared with RPE isolated from non-AMD donors (Fig. 7D).

Our in vitro data showed that DJ-1 is oxidized at C106 when the cells are exposed to oxidative stress. To check if oxDJ-1 is present in RPE cells in vivo, RPE lysates from AMD and non-AMD donors were probed for this modification with a specific antibody (Fig. 7B). oxDJ-1 was present in the RPE lysates from AMD donors at higher levels (Fig. 7B, lanes 6 to 10) when compared to the RPE lysates from non-AMD donors (Fig. 7B, lanes 1 to 5). DJ-1 immunoreactivity was normalized to the GAPDH content of the samples (Fig. 7C). Quantitation of these blots showed that oxDJ-1 immunoreactivity was ~6 fold higher in RPE isolated from AMD donors when compared with RPE isolated from non-AMD donors (Fig. 7D).

We next immunohistologically examined the location of DJ-1 in RPE from non-AMD and AMD donor eyes with geographic atrophy (Fig. 7E to L) and isolated BM/choroid from the perimacula of AMD donors (Fig. 7M to P). Immunostaining of DJ-1 was detected mostly in the RPE nuclei (arrowheads) but also in the cytoplasm of non-AMD donors (Fig. 7F and H, arrows). Significantly more DJ-1 was detected throughout the cytoplasm of RPE cells from two different AMD donors with geographic atrophy (Fig. 7J and L, arrows). Interestingly, DJ-1 presence in RPE cells became less intense at distances away from the region of RPE atrophy (Figure S3). In addition, in BM/choroid isolated from two different AMD donors and drusen (insoluble aggregates localized underneath the RPE, embodying the hallmark lesions of the disease, asterisks), in these samples were also specifically labeled with the DJ-1 antibody (Fig. 7N and P). In contrast, no significant DJ-1 labeling was observed when sections were reacted with the DJ-1 antibody, pre-absorbed with lysates from cells overexpressing exogenous DJ-1 (Fig. 7E, 7G, 7I, 7K, 7M and 7O). Our results showed that higher levels of DJ-1 and oxDJ-1 are present in RPE cells from AMD donors. In addition, we also reported that DJ-1 is also present in the hallmark lesion of this disease.

Discussion

Previous reports showed that DJ-1 is ubiquitously expressed in numerous tissues including the pancreas, kidney, skeletal muscle, liver, placenta, heart and brain, with high expression in astrocytes of the frontal cortex and substantia nigra [9]. We recently reported the identification of DJ-1 peptides in both young and aged RPE lysates using proteomics together with confirmation of the localization of DJ-1 in RPE cells in rat retinas using immunohistochemistry [44]. Here, we described DJ-1 increased expression and redistribution to mitochondria of RPE cells under oxidative stress. In addition, we report that overexpression of full-length DJ-1, prior to exposure to oxidative stress, led to significant decrease in the generation of ROS. Most importantly, increased DJ-1 and oxDJ-1 were detected by Western blot in human RPE lysates from AMD donors. Finally, immunohistochemistry detected DJ-1 in isolated human BM/choroid and in drusen from AMD eyes.

Results reported here in RPE cultures under baseline and oxidative stress conditions are in agreement with previous reporting of the subcellular distribution of DJ-1. At the subcellular level, under baseline conditions, DJ-1 is found mostly in the cytoplasm [32] and to a lesser extent in the mitochondria [23] and
Figure 5. Overexpression of DJ-1 full-length lead to increased levels and redistribution in RPE cells upon oxidative stress. ARPE-19 monolayers were transduced with high titer (5 × 10⁶ pfu) adenovirus carrying full length human DJ-1 (hDJ-1 Ad) or adenovirus carrying DJ-1 C to S mutant (C to S Ad). Forty-eight hours later cultures were treated (A, lanes 4 to 6) or not (A, lanes 1 to 3) with 400 μM H₂O₂, harvested, and analyzed by immunoblot assay with DJ-1 antibody (A). Each lane contained 20 μg of protein. Protein loads were confirmed in replicate blots probed with GAPDH (B). Immunoblots of lysates revealed that ARPE-19 cultures transduced with the hDJ-1 (A, lane 3) and with the C to S Ad constructs (A, lane 2) displayed significant increased immunoreactivity of DJ-1 when compared to ARPE-19 control cultures (A, lane 1) under baseline conditions. Quantification of immunoblots of these cultures demonstrated a 1.6 and 1.8 fold increase in the expression levels of DJ-1 in ARPE-19 transduced with the C to S and hDJ-1 Ad, respectively (C, blue columns). Blue columns = baseline ARPE-19 cultures; Red columns = ARPE-19 incubated with 400 μM H₂O₂ for 1 hr. Data expressed as mean relative signal intensity ± SEM (n = 3). Asterisks denote statistical significance compared with control ARPE-19 untreated cells (*p = 0.0007 in ARPE-19 transduced with C to S Ad and **p < 0.0001 ARPE-19 transduced with hDJ-1 Ad). In addition, a significant increase in the immunoreactivity of DJ-1 was observed when ARPE-19 cultures (A, lane 4) and ARPE-19 overexpressing the hDJ-1 Ad were subjected...
nucleus [50]. Under conditions of oxidative stress, more DJ-1 redistributes to mitochondria and later to the nucleus, and this correlates with the ability of DJ-1 to confer neuroprotection [23].

Our results reporting increased levels of DJ-1 in RPE cells subjected to oxidative stress induced by incubation with H2O2 and 4-HNE suggest that DJ-1 functions as a sensor of cellular redox homeostasis, which reacts to oxidative stress by increasing DJ-1 content. Similar data was previously reported when experiments were carried out in other cell types under oxidative stress induced by several agents [30,51,52,53,54,55,56,57].

DJ-1 has three C at amino acid numbers 53, 46 and 106, which can become oxidized upon oxidative stress and oxidation of C106 (oxDJ-1) is essential for DJ-1 to exert its full activities. In the present study we report the presence of oxDJ-1 in RPE cells in response to oxidative stress using antibodies that specifically recognize DJ-1 oxidized at C106 (oxDJ-1). Similar results have also been previously reported in other cells types and PD animal models [18,47,58,59,60]. DJ-1 has four Met (M) residues, which are also susceptible to oxidation in addition to the three C residues already cited. The oxidation of the M to the sulfoxide (1 O), and C to the sulfenic acid (1 O), sulfinic acid (2 Os) or sulfonic acid (3 Os) is expected to lead to increases in the number of O atoms in the protein ranging from four, if all four M residues are oxidized, and nine if all three C residues are fully oxidized, for a potential total of 13 additional oxygen atoms [18]. Interestingly, the molecular weight of the protein detected in RPE cells incubated with H2O2 displayed a higher molecular weight than the reported DJ-1 molecular weight (~25 kDa). The meaning of this observation is not fully known but it may be related to the generation of several DJ-1 isoforms resulting from the oxidation of the M and C residues [18,54,61].
Figure 7. Increased levels of DJ-1 and oxDJ-1 in RPE lysates and tissue from AMD donors. Lysates of human RPE isolated from non-AMD (A to C lanes 1 to 5) and AMD donors (A to C, lanes 6 to 10) were harvested and analyzed by immunoblot assay with DJ-1 antibody (A) and oxDJ-1 antibody (B). Each lane contained 20 μg of protein. Protein loads were confirmed in replicate blots probed with GAPDH (C). Immunoblots of lysates revealed that AMD RPE displayed significant increased immunoreactivity of both DJ-1 (A) and oxDJ-1 (B) when compared to non-AMD RPE lysates. Quantification of immunoblots demonstrated a 1.7 and 4 fold increase in the expression levels of DJ-1 and oxDJ-1, respectively (D). Blue columns = non-AMD; Red columns = AMD. Data is expressed as mean relative signal intensity ± SEM (n = 8). Asterisks denote statistical significance compared with non-AMD RPE (*p = 0.0098 for DJ-1 and **p = 0.0058 for oxDJ-1). Alternatively, cryosections of different non-AMD (E–H) and AMD (I to L) donors with geographic atrophy, and isolated Bruch’s membrane (BM) and choroid from two different AMD donors were (M to P) labeled with DJ-1 antibody. Negative control sections were reacted with DJ-1 antibody pre-absorbed with lysates of cells overexpressing DJ-1 and showed no DJ-1 labeling (E, G, I, K, M, O). DJ-1 labeling was detected mostly in the RPE nuclei (arrowheads) but also in the cytoplasm of non-AMD donors (F and H, arrows). Significantly more DJ-1 was detected all over the cytoplasm of RPE cells from two different AMD donors (J and L, arrows), while DJ-1 was diffusely distributed in isolated BM and in drusen (E, G, asterisks). Scale bars (E to L) = 10 μm; (M to P) = 50 μm.

doi:10.1371/journal.pone.0067983.g007
The importance of DJ-1 C oxidation is also highlighted in RPE cells overexpressing C to S DJ-1 mutant that are exposed to oxidative stress, which are unable to increase DJ-1 levels and redistribute DJ-1 intracellularly to mitochondria. Our results, together with previous reports, suggest that DJ-1 C oxidation is important for protein stabilization [61,62,63,64] and mitochondria localization [25,32,65].

We demonstrated that overexpression of full-length but not the C to S mutant DJ-1 lead to significant decrease in the generation of intracellular ROS. The data suggests DJ-1 C oxidation – dependent elimination of ROS in cells under oxidative stress. Similar findings have been reported [52,57,66,67,68,69].

We demonstrate here for the first time that DJ-1 levels are increased in RPE lysates from AMD donors and that DJ-1 immunolocalization in RPE is also increased in AMD donors displaying geographic atrophy. AMD is a multi-factorial disease with known established risk factors including age, cigarette smoking, family history, gender, high blood pressure, high fat diet and race [70,71,72]. However, our understanding of the detailed molecular mechanisms of the development of AMD still remains limited, and to date, there is no proficient cure or preventive treatment. Oxidative stress affecting the physiological function and leading to the death of the RPE cells is a major factor contributing to the pathogenesis of AMD [6,7]. Therefore, limiting RPE oxidative stress may represent an effective way to slow or possibly reverse vision loss of patients due to diseases such as AMD. Indeed, several in vitro studies have shown that oxidative stress-related RPE cell death and dysfunction was improved when the cells were treated with antioxidants [73,74,75,76]. Furthermore, a significant reduction toward retinal degeneration was reported in clinical trials involving AMD patients ingesting antioxidants such as lutein, zeaxanthin, zinc, vitamin C, and vitamin E [77,78]. It is likely that the increased levels of DJ-1 in RPE lysates from AMD donors is related to increased oxidative stress in these RPE cells in vivo. Increased levels of DJ-1 were also reported in the brains of PD and Alzheimer’s disease (AD) patients [27].

The increased presence of oxDJ-1 was reported in corneal buttons from Fuchs endothelial corneal dystrophy patients [56]. In addition, the presence of several oxidized DJ-1 isoforms have been found in patients with PD [79] and in patients with AD [27]. These data suggest that the DJ-1 oxidation status modulates its functions and that deregulation of DJ-1 oxidation may lead to the onset of diseases such as AMD [48]. In the present study we detected the increased presence of oxDJ-1 in RPE lysates from AMD donors using an antibody that detects oxidation at C106. Future experiments will be required to fully understand the significance of our finding.

A high number of mitochondria are present in the RPE due to its high metabolic activity [80]. During oxidative phosphorylation, the mitochondria produce the majority of the cellular energy in the form of ATP and also generate ROS as well [81,82]. A vicious circle of destruction takes place when ROS, including those generated leading to the preferred damage of mitochondrial genome (mtDNA). In turn, damaged mtDNA induces mitochondrial dysfunction with disturbance of oxidative phosphorylation and even higher production of ROS [2,83]. Therefore, it is not surprising that mitochondrial dysfunctions leading to increased ROS generation and mtDNA damage and specific haplogroups have been implicated in the pathophysiology of AMD [84,85,86,87,88,89,90,91,92]. We have shown here that an increased association of DJ-1 with mitochondria is observed in cells under oxidative stress. Therefore, it is likely that DJ-1 is “over-oxidized” in RPE cells from AMD patients failing to associate with the mitochondria and protect RPE cells from oxidative stress. Further experiments should concentrate on the analysis of DJ-1 intracellular distribution and oxidative isoforms in AMD and non-AMD RPE.

We reported here that DJ-1 was detected in Bruch’s membrane and drusen isolated from two different AMD donors raising the question of how a cytoplasmic protein could be detected extracellularly. Previously, we [93,94] and other groups [95,96,97,98] reported that many of proteins found in drusen are normally found intracellularly in the RPE. These results suggest that RPE cells from AMD donors release intracellular proteins along their basal surface through a yet unknown mechanism where they become concentrated in drusen, DJ-1 is an intracellular protein. However, recently DJ-1 has emerged as a significant biomarker since its presence has been detected in the serum of gastric cancer [99], prostate carcinomas [100], pancreatic cancer [101], non-small cell lung cancer [102] and uveal melanoma [103] patients. Similarly, higher DJ-1 levels have been noted in nipple secretions from breast carcinoma patients [104]. Moreover, DJ-1 has been detected in cerebrospinal fluid from Parkinson’s Disease patients [105,106,107] and urine from hepatocellular carcinoma [108] patients. Future studies will be needed to investigate how RPE cells release DJ-1 and to determine if it can be detected in the serum of AMD patients.

In summary, due to the evidence presented here connecting DJ-1 to protection against oxidative stress, it is conceivable that manipulation of DJ-1 function may be used to protect RPE cells from the oxidative stress implicated in AMD pathology.

Methods

Ethics Statement

The immunocytochemistry and Western analysis of human isolate RPE and BM/choroid is exempt of IRB approval since the human tissue was obtained and used after deceased.

All animal work was conducted in compliance with the Animal Welfare Act and Public Health Services policies, and under the oversight and approval of the Cleveland Clinic Institutional Animal Care and Use Committee (IACUC, protocol number ARC 2010-0136). All efforts were made to minimize animal suffering.

RPE Cell Cultures

Unless specified all media components were prepared in-house at the Cleveland Clinic cell culture lab core from commercially produced powders from Invitrogen, Sigma-Aldrich, and Caisson Labs.

The established cell line D407 [109], obtained as a gift from Dr. Richard Hunt (University of South Carolina School of Medicine, SC) was cultured at the temperature of 37°C as previously described [109]. B6-RPE07 mouse cells were cultured as previously described [45]. Briefly, cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 3% heat-inactivated fetal bovine serum, glutamax (Gibco), non-essential amino acids, and penicillin/streptomycin. To promote differentiation, B6-RPE and D407 cells, which have a very high rate of growth, were transfected to and cultured in serum-free epithelial medium for two passages (Quanum 206 for epithelia cells; PAA Laboratories Ltd.) before plating on laminin-(BD Biosciences, San Jose, CA) and collagen-coated Transwell inserts (Corning, Corning, NY), respectively. The human RPE cell line ARPE-19 was obtained from American Type Culture Collection (Manassas, VA, USA). The cells were maintained in DMEM/F12 1:1 containing 10% FBS and 5.5 mmol D-glucose in a humidified
incubator at 37°C in 5% CO2. The medium was changed every 3–4 days. Polarized ARPE-19 cells were plated and cultured for 3 weeks on collagen-coated Transwell inserts in 1% PBS medium before using in experiments. Primary mouse retinal pigment epithelium was isolated as previously described [110]. Briefly, eyes from ~2-week-old C57BL/6j mice were treated with 0.5 mg/ml bovine hyaluronidase (Sigma Chemical, St. Louis, MO) and 0.05 mg/ml of collagenase (Sigma-Aldrich) followed by and 0.1% trypsin (Dilco-BD Biosciences, Sparks, MD) in buffer for 60 min each incubation to allow the mechanical separation of the neural retina and exposure of the RPE. Patches of RPE were peeled off manually from Bruch’s membrane. To further dissociate the RPE patches, purified RPE cells were incubated with 0.05% trypsin/0.53 mM EDTA for 2 min at 37°C.

Human Eye Tissue

Donor eyes were obtained from the Cleveland Eye Bank or through the Foundation Fighting Blindness Eye (FFB) Donor Program (Columbia, MD). Tissue from 22 different donors were analyzed including 12 samples from non-AMD donors and 17 from AMD donors many of which, had previously been described [111]. The donor ages ranged between 35 and 91 years and the interval between time of death and tissue processing varied between 4 and 35.5 hours. Eye bank records accompanying the donor eyes indicated whether the donor had AMD or no known eye diseases.

Oxidative Stress Treatment

Monolayers were rinsed with warm PBS and incubated with PBS for 5 min at 37°C. Oxidative stress was induced by incubation with culture medium supplemented with 0–800 μM H2O2 for 1 and 24 hours. Alternatively, monolayers were stressed as described above and then processed for immunofluorescence or biochemistry analysis. Alternatively, cells were exposed to oxidative stress as described above and then processed for immunofluorescence or biochemistry analysis.

Adenovirus Infection

ARPE-19 cells were cultured as previously described. The replication-defective adenovirus vectors Ad5CMVPARK7 (for expression of human DJ-1 under control of a human cytomegalovirus [CMV] promoter) and AdCMVPARK7. C to S (for expression of human DJ-1 with the cysteine at residues 46, 53 and 106 mutated to serine) were prepared and titered by Welgen Inc. (Worcester, MA) using PARK7 human cDNA clone obtained from Origene (SC115623, Rockville, NY). To transduce cells, adenoviruses were mixed with transduction medium (20 mM Hepes-buffered DMEM containing 0.2% BSA) and incubated with cells for 2 h at a concentration of 5 x 10⁵ plaque forming units (pfu)/cell unless specified in text. Cells on Transwells had viruses added to both apical and basal surface. After infection, transduction medium was replaced by normal culture medium and cells were returned to incubator. Two days after adenovirus transduction, cells were washed with pre-warmed PBS and either fixed with 4% paraformaldehyde made in PBS and processed for immunofluorescence or scraped and pelleted down to be processed for biochemistry analysis. Alternatively, cells were exposed to oxidative stress as described above and then processed for immunofluorescence or biochemistry analysis.

Cell Loading with Fluorescent Probe to Detect Reactive Oxygen Species (ROS) Production

ARPE-19 monolayers were plated on glass coverslips and cultured as described above. Monolayers infected or not with adenoviruses as described above, were subjected to oxidative stress as described above. A 10 μM stock solution of CM-H2DCFDA (Molecular Probes, C6827) was prepared in DMSO immediately before use. Monolayers were loaded by a 15-min incubation with 10 μM DCFH-DA at room temperature in the dark. Following incubation, monolayers were washed with pre-warmed PBS at room temperature and carefully mounted immediately on the microscope slide in vectashield. Labeled cells were analyzed using a Leica laser scanning confocal microscope (TCS-SP2, Leica, Exton, PA). Cellular images were obtained by difference interference contrast (DIC).

Immunofluorescence of Cells

RPE monolayers on Transwells were fixed in 4% paraformaldehyde for 30 minutes at 4°C. Cells were blocked in PBS +1% BSA and incubated overnight at 4°C with polyclonal antibody directed against DJ-1 (NB300-270, 1:750; Novus), and DJ-1 oxidized at C106 (oxDJ-1, HCA024, 1:50; AbD serotec, Oxford, UK) and monoclonal antibody directed against OxPhos Complex IV subunit I (COX IV, 459600, 1:50; Invitrogen). Alexa Fluor488, Alexa Fluor594 and anti-Myc Tag Alexa Fluor488 secondary antibodies were added at room temperature for 1 hour (1:1000; Molecular Probes and 1:500; Millipore) and cell nuclei were labeled with TO-PRO-3 iodide (1:5000; Molecular Probes). Monolayers were analyzed using a Leica laser scanning confocal microscope. A series of 1 μm xy (en face) sections were collected. Each individual xy image of the retina stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). Microscopic panels were composed using Adobe Photoshop CS3 (Adobe, San Jose, CA).

Immunohistochemistry of Human Donor Tissue

To determine the localization of DJ-1 in RPE cells from non-AMD and AMD eyes and BM/choroid isolated from AMD donors, immunohistochemical assays were performed using cryosections in the peri-macular area. Isolated BM/choroid strips were isolated from the eyecups as previously described [94]. Eye pieces of retina-RPE-choroid were cut and fixed by immersion in cryosections in the peri-macular area. Isolated BM/choroid strips were isolated from the eyecups as previously described [94]. Eye pieces of retina-RPE-choroid were cut and fixed by immersion in 4% paraformaldehyde made in PBS overnight at 4°C, quenched with 50 mM NH4Cl made in PBS for 1 h at 4°C, infused successively with 10% and 20% sucrose made in the same buffer and with Tissue-Tek ™ 4583™ (Miles Inc., Elk hart, IN) as previously described [111]. Cryosections (8 μm) were cut on a cryostat HM 505E (Microm, Walldorf, Germany) equipped with a CryoJane Tape-Transfer system (Instrumedics, Inc., Hackensack, NJ, USA). Cryosections were washed, and processed for antigen retrieval in pre-heated Trilogy (Cell Marque, Rocklin, CA) by incubation for 30 min. in a steamer followed by transfer to room temperature for 20 min. to allow cryosections to cool down. Sections were blocked with PBS +1% BSA and probed with the DJ-1 antibody (TA301239, 1:750, Origene) overnight at 4°C followed by labeling with Vectastain Elite ABC reagent (Vector Laboratories, Inc., Burlingame, CA) according to the manufacturer’s instructions. Negative controls were pre-absorbed overnight in the rotator with 5 μg of lysisates of HEK293 cells overexpressing PARK7. Labeling was detected through incubation with ImmPACT VIP peroxidase substrate (Vector Laboratories) according to the manufacturer’s instructions. Slides were mounted in cytosel (Richard-Allan-Scientific, Kalamazoo, MI). The sections were examined with a
Zeiss AxiosImager.Z1 light microscope and the images were digitized using a Zeiss AxioCam MRc5 camera.

Western Blot Analysis

RPE cells were solubilized in RIPA buffer (0.1% SDS, 1% Triton X100, 1% deoxycholate, 0.15 M NaCl, 2 mM EDTA, 25 mM Tris pH 7.4) supplemented with a cocktail of protease and phosphatase inhibitors (Sigma Chemical Co., St. Louis, MO). Total RPE lysates (20 μg protein) were resolved by SDS-PAGE on 4–20% Novex® Tris-Glycine gel (Invitrogen Corporation, Carlsbad, CA) and electro-transferred to Immobilon PVDF membranes (Millipore, Bedford, MA). Membranes were blocked with H2BLOCKER liquid blocking reagent (Denville Scientific Inc., Metuchen, NJ) for 30 min. and incubated overnight in the same solution with antibodies to DJ-1 (NB300-270, 1:2000; Novus), DJ-1 oxidized at C106 (oxDJ-1, HCA024, 1:200; AbD serotec), GAPDH (ab9484, 1:1000; Abcam). Protein detection was performed with secondary antibodies conjugated to peroxidase and visualized using ECL Plus Western Blotting detection reagent (GE Healthcare Bio-Sciences Corp, Piscataway, NJ). PVDF membranes were exposed to film. Films were scanned and figures were composed using Adobe Photoshop CS3. Signal intensities were quantified using ImageJ 1.43u (http://rsb.info.nih.gov/ij).

Supporting Information

Figure S1 Oxidative stress induced by 4-HNE increases DJ-1 levels in RPE cells. ARPE-19 and D407 monolayers were treated with increasing concentrations (0 to 100 μM) of 4-HNE for 12 hrs (A) harvested, and analyzed by immunoblot assay with DJ-1 antibody (upper panel). Each lane contained 20 μg of protein. Protein loadings were confirmed in replicate blots probed with GAPDH (lower panel). A dose response of ARPE-19 (A, lanes 1 to 6) and D407 (A, lanes 7 to 12) is observed when cells are exposed to increasing concentrations of 4-HNE for 12 hrs. Quantitation of these blots showed that DJ-1 immunoreactivity was 1.5 and 1.4 fold higher in ARPE-19 incubated with 5 and 10 μM HNE and up to 2.1 fold in D407 cells incubated with 25 μM HNE when compared with control cell RPE cultures (B). Plotted data represent the intensity values for each band normalized to GAPDH signal and compared to the intensity of the control, untreated cells (lanes 1, 7). Red columns = ARPE-19; blue columns = D407 cells. Data is expressed as mean relative signal intensity ± SEM (n = 3). Asterisks denote statistical significance compared with control untreated cells (*p = 0.0097 and **p<0.0001 in the ARPE-19 and *p = 0.0006, **p = 0.0049, ***p = 0.0020, ****p<0.0001 in D407 cells).

(TIF)

Figure S2 Oxidative stress-dependent translocation of DJ-1 into mitochondria. Representative confocal micrographs of B6-RPE07 monolayers plated on glass coverslips and labeled with antibodies to DJ-1 (A, D) and the mitochondrial staining MitoTracker (B, E). Cell nuclei were labeled with TO-PRO-3. Under baseline conditions, there is very little colocalization between DJ-1 and MitoTracker, as observed in overlaid images (C). Upon oxidative stress induced by incubation with 200 μM H2O2 for 18 hrs, the diffused cytoplasmic DJ-1 staining disappears. Moreover, in overlaid images a pronounced mitochondrial staining for DJ-1 is apparent when cells are exposed to oxidative stress (F, arrows). Scale bar = 20 μm.

(TIF)

Figure S3 Increased levels of DJ-1 in region of RPE atrophy in AMD donor. Cryosections of non-AMD (A) and AMD (B, C) donors with geographic atrophy were labeled with DJ-1 antibody. DJ-1 labeling was detected mostly in the RPE nuclei (arrowheads) but also in the cytoplasm (A, arrows) of non-AMD donors; labeling was also observed in the choriocapillaris (B, double arrowheads). Significantly more DJ-1 was detected all over the cytoplasm of RPE cells (B, arrows) and choriocapillaris (B, double arrowheads) from an AMD donor with geographic atrophy in the atrophic region; labeling was also significantly more intense in the choriocapillaris in this region. DJ-1 labeling of a druse (B, asterisks) is also observed. Interestingly, in this same AMD donor eye, at distances away from the region of RPE atrophy, DJ-1 immunoreactivity was similar to that observed in the RPE normal control eyes (C). Scale bars = 10 μm.

(TIF)

Acknowledgments

The authors thank Xiaoping Yang for technical assistance in the preparation of this paper.

Author Contributions

Conceived and designed the experiments: VLB. Performed the experiments: KGS MER VLB. Analyzed the data: VLB JGH. Contributed reagents/materials/analysis tools: VLB. Wrote the paper: VLB.

References

Retinal deimination and PAD2 levels in retinas from donors with age-related macular degeneration (AMD)

Vera L. Bonilha a,*, Karen G. Shadrach a, Mary E. Rayborn a, Yong Li a,1, Gayle J.T. Pauer a, Stephanie A. Hagstrom a, Sanjoy K. Bhattacharyab, Joe G. Hollyfield a

a Department of Ophthalmology, The Cole Eye Institute(131), Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA
b Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA

Article info
Article history:
Received 14 November 2012
Accepted in revised form 22 March 2013
Available online 3 April 2013

Keywords:
posttranslational modifications
protein deimination
immunohistochemistry
AMD
retina
retinal pigment epithelium

ABSTRACT
Deimination is a form of protein posttranslational modification carried out by the peptidyl arginine deiminases (PADs) enzymes. PAD2 is the principal deiminase expressed in the retina. Elevated levels of PAD2 and protein deimination are present in a number of human neurological diseases, with or without ocular manifestation. To define the association of deimination with the pathogenesis of age-related macular degeneration (AMD), we studied protein deimination and PAD2 levels in retinas of AMD donor eyes compared to age-matched non-AMD retinas. Eyes from non-AMD and AMD donors were fixed in 4% paraformaldehyde and 0.5% glutaraldehyde in phosphate buffer. Retina and retinal pigment epithelium (RPE) from donor eyes were processed for immunohistochemical detection and western blotting using antibodies to PAD2 and citrulline residues. The ganglion cell, inner plexiform, inner nuclear and outer nuclear layers were labeled by both PAD2 and citrulline antibodies. Changes in the localization of deiminated residues and PAD2 were evident as the retinal layers were remodeled coincident with photoreceptor degeneration in AMD retinas. Immunodetection of either PAD2 or citrulline residues could not be evaluated in the RPE layer due to the high autofluorescence levels in this layer. Interestingly, higher deimination immunoreactivity was detected in AMD retinal lysates. However, no significant changes in PAD2 were detected in the AMD and non-AMD retinas and RPE lysates. Our observations show increased levels of protein deimination but not PAD2 in AMD retinas and RPE, suggesting a reduced rate of turnover of deiminated proteins in these AMD retinas.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction
Posttranslational modifications (PTMs) of proteins allow the incorporation of more structural and functional diversity in protein than is possible with only variations in amino acid residues. In turn PTMs become important as signals in the regulation of many cellular activities. Protein deimination, often referred to as citrullination, is a PTM that is carried out by peptidyl arginine deiminases (PADs) upon increase of intracellular calcium levels and involves conversion of arginine residues to citrulline (Vossenaar et al., 2003). Deimination of proteins induces a decrease in the charge of the modified proteins with major consequences on their conformation, stability and/or interactions with other proteins, and therefore on their functions (Gyorgy et al., 2006; Mechin et al., 2011). Mammalian cells possess five protein deiminases, PAD1-4 and 6 (Vossenaar et al., 2003).

PAD2 is considered the most prevalent isotype expressed in the central nervous system. Hence, elevated levels of PAD2 and protein deimination have been reported in a number of human neurological diseases including autoimmune encephalomyelitis (Nicholas et al., 2005), multiple sclerosis (Moscarello et al., 2007), Alzheimer’s disease (Ishigami et al., 2005; Louw et al., 2007; Mohlake and Whiteley, 2010; Acharya et al., 2012), Parkinson’s disease (Nicholas, 2011), amyotrophic lateral sclerosis (Chou et al., 1996), and glaucoma (Bhattacharyya et al., 2006a, 2006b; Cafaro et al., 2010). Elevated levels of PADs and protein deimination have also been linked to the pathogenesis of autoimmune diseases such as rheumatoid arthritis (Yamada et al., 2005; Harris et al., 2008; Kochi, 2010; Kochi et al., 2011; Giles et al., 2012).

Previously, it was reported that human brain from multiple sclerosis donors displayed increased deimination in comparison to brain from control and donors with other neurological diseases...
(Moscarello et al., 1994). The same study also found that infants possess higher levels of deimination compared to normal adults and that the relative proportion of relative deiminated protein in both multiple sclerosis and infant brain tissue was similar (Moscarello et al., 1994). We recently reported reduced levels of deimination in the retina, optic nerve, and blood of older F344BN rats compared to young animals. These observations were in concert with reduced mRNA and protein levels and activity for PAD2 in the retina and optic nerve of older rats compared to those from young rats (Bhattacharya et al., 2008). We also reported decreased deimination in ganglion cell layer together with increased deimination in other retinal layers to occur in a mouse model of demyelination (Pelizaeus-Merzbacher disease termed ND4 mice). These findings were accompanied by a decrease in inner retinal function indicating loss of vision in ND4 mice. In these mice, local restoration of deimination dramatically improved retinal function (Moscarello et al., 1994). We recently reported reduced levels of deimination in the retina, optic nerve, and blood of older F344BN rats compared to young animals. These observations were in concert with reduced mRNA and protein levels and activity for PAD2 in the retina and optic nerve of older rats compared to those from young rats (Bhattacharya et al., 2008). We also reported decreased deimination in ganglion cell layer together with increased deimination in other retinal layers to occur in a mouse model of demyelination (Pelizaeus-Merzbacher disease termed ND4 mice). These findings were accompanied by a decrease in inner retinal function indicating loss of vision in ND4 mice. In these mice, local restoration of deimination dramatically improved retinal function (Moscarello et al., 1994). Taken together, these findings suggest the cell-specific regulation of deimination may be a previously unrecognized indicator of retinal function. For example, increased deimination in astrocytes and decreased deimination in ganglion cells occurs in neurodegenerative disease. In contrast, increased deimination occurs in developing ganglion cells in infants. These results are consistent with our conjecture pertaining to differences in deimination in disease and development (Bhattacharya, 2009).

Age-related macular degeneration (AMD) is the most common cause of irreversible blindness in the elderly population in industrialized countries. AMD is characterized by progressive loss of photoreceptors in the macula secondary to dysfunction of the retinal pigment epithelium (RPE) in the setting of prominent extracellular lesions. Late AMD can manifest in two forms, geographic atrophy or “dry” AMD and neovascular or “wet” AMD. Geographic atrophic (GA) is characterized by focal death of RPE, photoreceptors and choriocapillaris in the macula often together with large and abundant drusen accumulation (Biarnés et al., 2011). The “wet”, neovascular form, occurs when new abnormal blood vessels, originating from the choroid, penetrate Bruch’s membrane causing damage to the RPE and overlying photoreceptors and resulting in vascular leakage, hemorrhage, and scarring (Freund et al., 2010). Dry AMD is much more common than wet, but choroidal neovascularization (CNV) in wet AMD accounts for the majority of vision loss (Bressler et al., 1988). The purpose of this study was to define the distribution of protein deimination and PAD2 in eyes from donors with AMD and to compare this with the distribution in age-matched non-AMD eyes. We found that the amount of protein deimination but not the levels of PAD2 was significantly increased in retinal and RPE lysates from AMD donor eyes, as compared to that observed from non-AMD eyes. All together our data suggests that strict, localized regulation of deimination levels is essential for retinal function.

2. Material and methods

2.1. Human eye tissue

Donor eyes were obtained from the Cleveland Eye Bank or through the Foundation Fighting Blindness Eye (FFB) Donor Program (Columbia, MD). Tissue from 41 different donors was analyzed. Among those, 16 samples were from non-AMD donors and 25 were from AMD donors. The analyzed tissue included FFB donations # 703, 704, 711, 714, 716, 722, 723, 728, 745, 758, 781. The donor ages varied between 35 and 91 years and the interval between time of death and tissue processing varied between 4 and 35.5 h. Additional information about the donors is provided in Table 1. Eye bank records accompanying the donor eyes indicated whether the donor had AMD or no known eye diseases. One eye from each donor was used in our analysis. Globes were cut through the ora serrata and individually assessed for gross pathology using a Zeiss Universal S3 surgical microscope with an OPMI MD Microscopic Head equipped with a Xenon Light Source. Upon dissection, the fundus of each eye was analyzed, and graded according to the AREDS disease stage using the Minnesota grading system for post-mortem eyes as defined by the location and area of drusen distribution (Olsen and Feng, 2004). In our samples we could not determine if subretinal drusenoid deposits were present. Fixed eyes were analyzed intact, with the retina on top of the RPE, while unfixed tissue had the retina mechanically removed from the RPE before grading the eyes. Of the AMD eyes used in this analysis, 7 had advanced AMD, defined as either neovascular AMD or geographic atrophy (GA) involving the center of the macula, and the remaining eyes were either stage 2 or 3. Non-AMD control eyes did not have any drusen in the macular area nor did they display any grossly visible AMD features. The immunohistochemical and Western blot analysis of these eyes is exempt of IRB approval.

Macroscopic fundus images were collected using a Zeiss AxioCam MRcCCs camera equipped with a macro video lens. Prior to imaging, the cornea and lens were removed leaving only the posterior pole. Remaining eyecups were filled with PBS to eliminate specular reflections and improve contrast and image quality.

<table>
<thead>
<tr>
<th>Donor ID</th>
<th>Age<sup>a</sup></th>
<th>Gender<sup>b</sup></th>
<th>Race<sup>c</sup></th>
<th>PMT<sup>d</sup></th>
<th>Donor type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>84</td>
<td>M</td>
<td>C</td>
<td>10</td>
<td>AMD</td>
</tr>
<tr>
<td>2</td>
<td>92</td>
<td>F</td>
<td>C</td>
<td>10</td>
<td>AMD</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>M</td>
<td>C</td>
<td>10</td>
<td>AMD</td>
</tr>
<tr>
<td>4</td>
<td>83</td>
<td>M</td>
<td>C</td>
<td>10</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>5</td>
<td>91</td>
<td>F</td>
<td>C</td>
<td>10</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>6</td>
<td>73</td>
<td>M</td>
<td>C</td>
<td>10</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>M</td>
<td>C</td>
<td>8</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>8</td>
<td>74</td>
<td>F</td>
<td>AA</td>
<td>8.5</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>9</td>
<td>79</td>
<td>F</td>
<td>C</td>
<td>6</td>
<td>AMD</td>
</tr>
<tr>
<td>10</td>
<td>83</td>
<td>M</td>
<td>C</td>
<td>7.5</td>
<td>AMD</td>
</tr>
<tr>
<td>11</td>
<td>87</td>
<td>F</td>
<td>C</td>
<td>4</td>
<td>AMD</td>
</tr>
<tr>
<td>12</td>
<td>93</td>
<td>M</td>
<td>C</td>
<td>4.5</td>
<td>AMD</td>
</tr>
<tr>
<td>13</td>
<td>97</td>
<td>M</td>
<td>C</td>
<td>6</td>
<td>AMD</td>
</tr>
<tr>
<td>14</td>
<td>70</td>
<td>F</td>
<td>C</td>
<td>6</td>
<td>AMD</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>M</td>
<td>C</td>
<td><6</td>
<td>AMD</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
<td>M</td>
<td>C</td>
<td>5</td>
<td>AMD</td>
</tr>
<tr>
<td>17</td>
<td>80</td>
<td>M</td>
<td>C</td>
<td>4.5</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>18</td>
<td>80</td>
<td>M</td>
<td>C</td>
<td>2.5</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>19</td>
<td>82</td>
<td>M</td>
<td>C</td>
<td>12</td>
<td>AMD</td>
</tr>
<tr>
<td>20</td>
<td>81</td>
<td>M</td>
<td>C</td>
<td>8</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>21</td>
<td>91</td>
<td>M</td>
<td>C</td>
<td><6</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>22</td>
<td>35</td>
<td>M</td>
<td>C</td>
<td>7</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>23</td>
<td>72</td>
<td>M</td>
<td>C</td>
<td>12</td>
<td>AMD</td>
</tr>
<tr>
<td>24</td>
<td>80</td>
<td>M</td>
<td>C</td>
<td>2</td>
<td>AMD</td>
</tr>
<tr>
<td>25</td>
<td>82</td>
<td>F</td>
<td>C</td>
<td>9</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>26</td>
<td>81</td>
<td>F</td>
<td>C</td>
<td>4.5</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>27</td>
<td>72</td>
<td>F</td>
<td>C</td>
<td>5.1</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>28</td>
<td>50</td>
<td>F</td>
<td>C</td>
<td>8.5</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>FFB#703</td>
<td>23</td>
<td>M</td>
<td>C</td>
<td>19</td>
<td>AMD</td>
</tr>
<tr>
<td>FFB#704</td>
<td>93</td>
<td>U</td>
<td>U</td>
<td>8.5</td>
<td>AMD</td>
</tr>
<tr>
<td>FFB#711</td>
<td>83</td>
<td>U</td>
<td>U</td>
<td>13</td>
<td>AMD</td>
</tr>
<tr>
<td>FFB#714</td>
<td>82</td>
<td>F</td>
<td>C</td>
<td>6.5</td>
<td>AMD</td>
</tr>
<tr>
<td>FFB#716</td>
<td>80</td>
<td>F</td>
<td>C</td>
<td>35.5</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>FFB#722</td>
<td>90</td>
<td>M</td>
<td>C</td>
<td>22</td>
<td>AMD</td>
</tr>
<tr>
<td>FFB#723</td>
<td>76</td>
<td>M</td>
<td>C</td>
<td>9.5</td>
<td>AMD</td>
</tr>
<tr>
<td>FFB#728</td>
<td>91</td>
<td>M</td>
<td>C</td>
<td>7.5</td>
<td>AMD</td>
</tr>
<tr>
<td>FFB#745</td>
<td>65</td>
<td>F</td>
<td>C</td>
<td>7.5</td>
<td>NON-AMD</td>
</tr>
<tr>
<td>FFB#758</td>
<td>91</td>
<td>F</td>
<td>C</td>
<td>7</td>
<td>AMD</td>
</tr>
<tr>
<td>FFB#781</td>
<td>80</td>
<td>F</td>
<td>C</td>
<td>9</td>
<td>AMD</td>
</tr>
</tbody>
</table>

^a Age: at death (years).
^b Gender: M = Male, F = Female, U = Unknown.
^c Race: C = Caucasian, AA = African American, U = Unknown.
^d Interval from death to preservation (hrs).
2.2. Preparation of human RPE and retina lysates

RPE cells (Table 1) were isolated using the protocol initially described with mechanical removal of the retina and brushing of the RPE from the choroid in PBS (Nakata et al., 2005). RPE cells suspended in PBS were pelleted, the PBS was aspirated from the tube and fresh PBS containing protease inhibitors was added to the cells. The RPE cells were kept at –80 °C until used. RPE lysates were diluted 1:1 with 2× radioimmunoprecipitation buffer (RIPA) (0.2% SDS, 2% Triton X 100, 2% deoxycholate, 0.15 M NaCl, 4 mM EDTA, 50 mM Tris pH 7.4) containing a cocktail of protease and phosphatase inhibitors (Sigma, St. Louis, MO, USA). Pieces of retinas collected from human donor eyes were collected into eppendorf tubes and lysed in 1× RIPA buffer. Cells were lysed for 1 h at 4 °C in a rotator, centrifuged for 10 min at 14000 rpm and the supernatants were transferred to clean tubes. The protein concentration was determined using the MicroBCA kit (Pierce Biotechnology, Inc., Rockford, IL) according to the manufacture’s directions.

2.3. Western blot analysis of lysates

Protein from each sample (40 μg) was boiled in SDS sample buffer (62.5 mM Tris-HCl (pH 6.8), 25% glycerol, 0.01% bromophenol blue, and 2% SDS), separated on a 10%–20% Novex®-Tris-Glycine gel (Invitrogen Corporation, Carlsbad, CA) and electro-transferred to Immobilon PVDF membranes (Millipore, Bedford, MA) using a Bio-Rad Semi-Dry Electrophoretic Transfer Cell (20 min transfer at 18 V). Membranes were incubated with antibodies to modified citrulline (#17-347, from the Anti-Citrulline (modified) Detection Kit, EMD Millipore, Lake Placid, NY) and PAD2 (ab16478, Abcam, Cambridge, MA) in Blotto A buffer (20 mM Tris/HCl, 0.9% NaCl, 0.05% Tween 20 (TBST), 5% skimmed milk) for 1 h. For detection of deimination, PVDF membranes were incubated at 37 °C overnight without agitation with modification buffer, prepared by mixing 1 part of reagent A (0.025% FeCl3 in a solution of sterile, distilled water/98%H2SO4/85%H3PO4 (55%/25%/ 20%)) and 1 part of reagent B (0.5% 2,3-butanedione monoxime, 0.25% antipyrine, 0.5 M acetic acid) as described in the anti-citrulline (modified) detection kit (Millipore). After extensive washing and blocking, membranes were reacted with secondary antibodies conjugated to peroxidase and signal was visualized using chemiluminescence Reagent Plus (NEN Life Science Products, Inc., Boston, MA) detection system.

The gels were stained with Gelcode Blue (Thermo Scientific, Rockford, IL), after partial transfer to PVDF membranes to serve as a reference for the load homogeneity of the samples as previously described (Bando et al., 2007; Bonilha et al., 2008). Briefly, both gel and blot were digitized using a densitometer (BIO-RAD GS800), and the density of the gel and bands was measured and transferred to pixels using Quantity One 4.6.8. A rectangular area was drawn around the most intense band signal in the scanned blots and used as a template to determine the number of pixels in these areas. Plotted signals represent pixel intensity for each band after subtraction from the background signal. The total protein pixel number from each donor lane stained with Gelcode Blue in the transferred gel was quantified. The previously determined number of pixels in the Western blot was divided by the pixels in the Gelcode Blue lane, and these then were used to establish the pixel count per sample. The average pixel count was determined as a mean of all the AMD and non-AMD samples. Standard error and t-test were calculated using GraphPad Software (http://www.graphpad.com/quickcalc/ttest1.cfm) and are presented in Section 3.

2.4. Immunohistoology of tissue

The presence of deiminated proteins was investigated in cryosections of AMD and non-AMD eyes in the perifoveal area (between the fovea and the optic nerve head). Eye pieces of retina-RPE-choroid were cut and fixed by immersion in 4% paraformaldehyde made in PBS overnight at 4 °C, quenched with 50 mM NaH2OCl made in PBS for 1 h at 4 °C, infused successively with 10% and 20% sucrose made in the same buffer and with Tissue-Tek™ “4583” (Miles Inc., Elkhart, IN). 10–12 μm cryosections were cut on a cryostat HM 505E (Microm, Walldorf, Germany) equipped with a CryoJante Tape-Transfer system (Instrumedics, Inc., Hackensack, NJ, USA). For detection of protein deimination, cryosections of retina-RPE-choroid were processed and labeled using anti-citrulline (modified) detection kit as described in western blot analysis. Briefly, cryosections of retina-RPE-choroid were hydrated, the freezing medium (3 parts of 20% sucrose made in PBS to 7 parts of Tissue-Tek™ “4583”) was removed and cryosections of retina-RPE-choroid were treated with freshly made modification buffer for 30 min at 37 °C. Tissue was blocked in PBS supplemented with 1% BSA (PBS/BSA) for 30 min, and incubated with the antibodies to protein deimination (Millipore) and PAD2. The monoclonal PAD2 antibody has been previously described and characterized in rat retinas (Koike et al., 1994; Bhattacharya et al., 2008). Cell nuclei were labeled with TO-PRO®-3 iodide (Molecular Probes). Secondary antibody (goat anti-rabbit IgG; 1:1000) was labeled with Alexa Fluor 488. Sections were analyzed using a Leica laser scanning confocal microscope (TCS-SP2, Leica, Exton, PA). A series of 1 μm xy sections were collected. Each individual xy image of the retinas stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). Microscopic panels were composed using Adobe Photoshop CS3 (Adobe, San Jose, CA). The labeling controls were incubated with secondary antibodies only.

2.5. Genetic analysis of AMD samples

Several of the donor samples (11 non-AMD and 25 AMD) were genotyped for single nucleotide polymorphisms (SNPs) previously shown to be associated with the development and progression of AMD. DNA was extracted from blood or eye tissue by means of the Gentra Systems PUREGENE DNA Purification kit (Qiagen, Minneapolis, MN). Samples were genotyped for SNPs rs1061170 (HTRA1), rs10490924 (ARMS2), rs11200638 (HTRA1), and rs2230199 (C3), using TaqMan SNP genotyping assays.

3. Results

3.1. Immunolocalization of deimination in retinas of AMD donors

To define the localization of deiminated proteins and PAD2 in the retina of AMD donors several samples were analyzed. Representative fundus images are presented in Fig. 1 of one non-AMD eye (Fig. 1A) and four advanced AMD eyes (Fig. 1B–E). Evidence for GA (Fig. 1B–C) and neovascular AMD (Fig. 1D–E) can be observed in the areas selected for histological analysis (Fig. 1, rectangles).

The distribution of deiminated proteins from perifovea of non-AMD (Fig. 2A and D) and in AMD retinas (Fig. 2B, C, E and F) is illustrated in Fig. 2. Analysis of the retinal sections showed that the localization of immunoreactivity of deiminated proteins in AMD retinas was similar to that observed in non-AMD retinas. Specifically, labeling was observed in ganglion cell, inner nuclear layer and outer nuclear layer as well as the choroid in non-AMD retinas (Fig. 2A) when deimination labeling was overlaid on differential...
contrast images (DIC) of the retina. Interestingly, deimination immunoreactivity was mostly localized to the nuclei of cells in each of these locations. A disorganized distribution of deiminated proteins was evident in the degenerated areas of the retinas of AMD donors due to retina modeling as evidenced by the retina morphology (Fig. 2B, C, E and F, braces). Non-AMD (Fig. 2D) and AMD (data not shown) retinas labeled only with the secondary antibody did not display any deiminated protein labeling.

3.2. Similar immunolocalization of PAD2 in retinas of several AMD donors

The distribution of PAD2 was also analyzed in the perimacula of AMD and non-AMD retinas (Fig. 3). Interestingly, PAD2 immunoreactivity was stronger and more abundant than deimination. PAD2 was detected in all retinal lamina in both non-AMD (Fig. 3A) and AMD retinas from several donors (Fig. 3B, C, E and F). PAD2 also localized to the nuclei of cells in the ganglion cell layer, and the inner and outer nuclear layer. A disorganized distribution of PAD2 was evident in the degenerated areas of the retinas of AMD donors (Fig. 3B, C, E and F, braces). Non-AMD (Fig. 3D) and AMD (data not shown) retinas labeled only with the secondary antibody did not display any PAD2 labeling; non-AMD retina displayed typical laminar organization.

3.3. Protein deimination in RPE and retina lysates of AMD donors

The intensity of immunoreactivity of deiminated protein within the AMD and non-AMD RPE and retinas were separately analyzed by western blot analysis using anti-modified citrulline antibody and comparison to gels stained with Gelcode blue after partial transfer to PVDF membranes to serve as reference for the load homogeneity of the samples (Fig. 4A and D). Our analysis revealed significant increase in the immunoreactivity in AMD RPE lysates (Fig. 4B, lane 5–8) when compared to non-AMD retinas (Fig. 4B, lane 1–4). The specificity of the immunoreactivity was demonstrated by reacting Drosophila (canton S strain) whole extract, which lacks PADs (Fig. 4B, lane 9), and Drosophila whole extract that has been subjected to citrullination with PAD2 incubation (Fig. 4B, lane 10). Significant increase in the deiminated immunoreactivity was also observed in AMD (Fig. 4E, lane 5–8) and non-AMD retinal lysates (Fig. 4E, lane 1–4). The deiminated proteins in RPE lysates showed several prominent protein bands (ca. between 82 and 49 kDa and ~200 kDa, Fig. 4B). In contrast, the retinal lysates displayed several major bands in the molecular weight range 37–64 kDa (Fig. 4E). Immunoblot quantification of RPE and retina lysates obtained from AMD donor eyes displayed significant increase in protein deimination immunoreactivity intensity (Fig. 4C and F). Quantitation of these blots showed that protein deimination immunoreactivity was upregulated 1.8 fold in AMD RPE and 2.2 fold in AMD retina samples when compared with non-AMD samples. These differences were statistically significant (p = 0.0164 in the RPE and p = 0.0481 in the retinas) (Fig. 4C and F).

3.4. PAD2 in RPE and retina lysates of AMD donors

The differences in immunoreactivity of PAD2 within the AMD and non-AMD RPE and retinas were addressed by Western

Fig. 1. In situ imaging of whole AMD and age-matched non-AMD donor eyes. The optic nerve head, macula and retinal veins were visible in the macroscopic fundus image of the non-AMD eye (A). AMD samples displayed typical geographic atrophy (B, D) and exudate accumulation around the macula (C–E). Rectangles highlight the areas selected for histological analysis.
analysis. Whole RPE (Fig. 5A–C) and retina (Fig. 5D–F) lysates were harvested, resolved in an SDS-PAGE and transferred to a membrane and reacted with PAD2 antibody. Western blot using anti-PAD2 antibody revealed no significant differences in the immunoreactivity between non-AMD (Fig. 5B, lane 1–4) and AMD (Fig. 5B, lane 5–8) RPE lysates. Similar observations were also made for non-AMD (Fig. 5E, lane 1–4) and AMD retinal (Fig. 5E, lane 5–8) lysates probed with anti-PAD2 antibody. Quantitation of these blots showed PAD2 immunoreactivity was upregulated 1.2 fold in both AMD RPE and retina samples when compared with non-AMD samples. However, these differences were not statistically significant ($p = 0.2193$ in RPE and $p = 0.4535$ in retinas) (Fig. 5C and F).

3.5. No differential genetic association in AMD compared to non-AMD donors

Among the donor tissue studied, 11 non-AMD and 25 AMD were genotyped for four SNPs previously associated with the risk and progression of AMD. These included: (1) complement factor H (CFH) Y402H (rs1061170), (2) age-related maculopathy susceptibility 2 (ARMS2, also called LOC387715) A69S (rs10490924), (3) high temperature requirement factor A1 (HTRA1) (rs11200638), and (4) complement component 3 (C3) R80G (rs2230199). The minor allele frequencies for each SNP are shown in Table 2. There was no significant difference between the AMD samples and the non-AMD samples at any of the SNPs.

Fig. 2. Protein deimination localization is similar in the retinas of AMD and non-AMD donors. The levels of protein deimination staining were analyzed in the perifovea of non-AMD (A) and AMD retinas (B, C, E, F). Immunoreactivity was overlaid on differential contrast images (DIC) of the retina. Analysis of the AMD retinal sections showed that the levels of deiminated proteins observed were similar to the levels observed in non-AMD retinas. Specifically, non-AMD retinas displayed protein deimination in the ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL). Interestingly, deimination was frequently localized to the nuclei of cells in these layers of both AMD and non-AMD. A disorganized distribution of deiminated proteins was visible in the degenerated areas of the retinas of AMD donors (braces). Non-AMD (D) and AMD (data not shown) retinas labeled only with the secondary antibody did not display any deiminated protein labeling. Bar = 40 μm.

Fig. 3. PAD2 levels are similar in the retinas of AMD and non-AMD donors. The levels of PAD2 were analyzed in the perifovea of non-AMD (A, D) and AMD retinas (B, C, E, F). Nuclei were labeled with TO-PRO3 and are shown in blue to serve as a reference for the retinal layers. Analysis of the AMD retinal sections showed that the levels of PAD2 were similar to the levels observed in non-AMD retinas. Immunolocalization of PAD2 was present in all retinal layers, namely, ganglion cell layer (GCL), inner nuclear layer (INL), outer nuclear layer (ONL). Interestingly, PAD2 was frequently localized to the nuclei of cells in the GCL and INL. A disorganized distribution of PAD2 was visible in the degenerated areas of the retinas of AMD donors (braces). Non-AMD (D) and AMD (data not shown) retinas labeled only with the secondary antibody did not display any deiminated protein labeling. Bar = 40 μm.
4. Discussion

Deimination is a form of protein PTM involving conversion of arginine residues into citrulline. This reaction is carried out by PAD2 in the retina. Previously, we observed lower levels of proteins deimination in the retina and optic nerve as well as reduced blood levels in older rats compared to young animals. The purpose of this investigation was to define the distribution and relative levels of protein deimination and PAD2 in retinal tissues from AMD donor eyes for comparison with these tissues from age-matched non-AMD eyes. We found that deiminated proteins were highest in AMD tissues, but PAD2 levels were not increased above those present in non-AMD tissues. To our knowledge this is the first report on citrullination in retinas of donors with AMD.

The calcium-dependent enzymatic deimination of peptidyl-arginine to peptidyl-citrulline, leads to a decrease in the charge of protein.
the modified proteins with major consequences on their conformation, stability and/or interactions. In turn, this affects their functions (Mechin et al., 2011). The physiologic significance of deimination is yet to be defined.

It has been reported that PAD2 activity in damaged neuronal tissue is often triggered by calcium imbalance (Asaga et al., 2002). We did not specifically measure Ca$^2+$ levels in the samples analyzed. However, several reports suggest that changes in Ca$^2+$ signaling are observed in AMD retinas and may be a factor modulating PAD2 activity in AMD retinas (Spraul and Grossniklaus, 1997; Li et al., 2010; Voge et al., 2011; Chen et al., 2012). First, oxidative stress, an important cause of retinal pigment epithelium death and subsequent AMD, induces calcium overload and leads to cell injury (Li et al., 2010). Second, it has been shown that all-trans-retinal-mediated photoreceptor degeneration is associated with changes in PLC/IP3/Ca$^2+$ signaling (Chen et al., 2012). Third, calcification of Bruch’s membrane has been reported in postmortem eyes from AMD donors (Spraul and Grossniklaus, 1997) and is increased in geographic atrophy eyes (Voge et al., 2011). Fourth, calcification is an end-stage of drusen (Rudolf et al., 2008).

Variability was observed in the PAD2 immunoreactivity and protein deimination in the AMD and non-AMD retinal lysates. This observation may be related to different genetic markers and environmental factors associated with each sample. Indeed, it is known that genetic factors and environment influence susceptibility to AMD (Smith et al., 2001; Chen et al., 2010, 2011; Choudhury et al., 2011; Seddon et al., 2011). However, our analysis of the four SNPs that are consistently shown to have the strongest associations with protein deimination in the AMD and non-AMD retinal lysates. This results suggest that genetic risk factors do not influence deimination of proteins in AMD retinas. Environmental factors such as smoking have been linked to genetic risk factors do not in

Table 2

<table>
<thead>
<tr>
<th>SNP</th>
<th>Risk allele</th>
<th>MAF AMD</th>
<th>MAF Non-AMD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1061170 (C/F)</td>
<td>C</td>
<td>0.40</td>
<td>0.36</td>
<td>1.000</td>
</tr>
<tr>
<td>rs10490924 (ARMS2)</td>
<td>T</td>
<td>0.28</td>
<td>0.23</td>
<td>0.772</td>
</tr>
<tr>
<td>rs11206638 (HTRA1)</td>
<td>A</td>
<td>0.28</td>
<td>0.23</td>
<td>0.772</td>
</tr>
<tr>
<td>rs2230199 (C/G)</td>
<td>G</td>
<td>0.19</td>
<td>0.15</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Our results, suggest that protein deimination may have a role in the pathology of AMD and that deiminated proteins might become a useful biomarker for neurodegeneration in this disease. Our experiments did not address the identity of proteins deiminated in the AMD retinas. Previously, immunoprecipitation and mass spectrometry have identified about 36 proteins that potentially undergo deimination in the human retina (Bhattacharya, 2009). Several of these proteins could be citrullinated in AMD retinas leading to changes in their biological activity. Alternatively, it is possible that molecules involved in soft tissue calcification such as pyrophosphate, fetaun A, matrix gla protein, vitamin K, and ATP-binding cassette 6, among other proteins may be regulated through deimination in the retina.

Acknowledgments

Supported by NIH grants EY014240 (JG), a Research Center Grant from the Foundation Fighting Blindness (JGH), a Challenge Grant from Research to Prevent Blindness (JGH) and Research to Prevent Blindness career award (SKB).

References

V.L. Bonilha et al. / Experimental Eye Research 111 (2013) 71–78
Chapter 60
Imaging Human Postmortem Eyes with SLO and OCT

Nika Bagheri, Brent A. Bell, Vera L. Bonilha, and Joe G. Hollyfield

Keywords Scanning laser ophthalmoscope • Optical coherence tomography • Macular hole • Retinal pigment epithelium detachment • Age-related macular degeneration • Retinitis pigmentosa

60.1 Introduction

The confocal scanning laser ophthalmoscope (SLO) and the spectral-domain optical coherence tomography (OCT) are two imaging systems that have rapidly revolutionized clinical ophthalmology. SLO is a noncontact, high-resolution imaging system that is now a worldwide standard in macular diagnostics. It has multiple imaging modes that provide contrast for imaging a variety of retinal conditions (Sharp and Manivannan 1997). Currently, SLO is used to evaluate a wide spectrum of retinal and choroidal diseases (Hassenstein and Meyer 2009). OCT provides in-depth structural detail of retinal morphology with an axial resolution of several microns. Today, this “noninvasive optical-biopsy” is used extensively for early diagnosis and precise monitoring of glaucoma and retinal diseases (Geitzenauer et al. 2010). These two instruments continue to make substantial advances in clinical ophthalmology (Da Pozzo et al. 2009; Wolf-Schnurrbusch et al. 2008; Imamura et al. 2009).

Here, we describe the use of SLO and OCT as the initial assessment to (1) screen “normal” postmortem eyes for retinal lesions, and (2) better characterize retinal lesions in eyes with suspected pathology prior to histological analysis. Just as the combination of SLO and OCT provides a comprehensive diagnostic assessment in the clinic, the combination of these two modalities ensures comprehensive characterization of retinal lesions prior to histopathology.

N. Bagheri • B.A. Bell • V.L. Bonilha • J.G. Hollyfield (*)
Department of Ophthalmology, Cole Eye Institute (i31), Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
e-mail: hollyfj@ccf.org

M.M. LaVail et al. (eds.), Retinal Degenerative Diseases, Advances in Experimental Medicine and Biology 723, DOI 10.1007/978-1-4614-0631-0_60,
© Springer Science+Business Media, LLC 2012
60.2 Materials and Methods

60.2.1 Tissue Preparation

Postmortem human eyes were obtained through the donor eye program of the Foundation Fighting Blindness (donations #777, #779, #784, #846, #908). Five donors (6 eyes) are described (Table 60.1). The first three donors’ eyes had no grossly visible pathology. #846 had a fibrovascular scar consistent with end-stage age-related macular degeneration (AMD). #908 had extensive degeneration from retinitis pigmentosa (RP). Globes were initially fixed in 4% paraformaldehyde and 0.5% glutaraldehyde in 0.1 M phosphate buffer and later stored in 2% paraformaldehyde in the same buffer. Globes were bisected near the equator, dividing the globe into an anterior and posterior pole; the latter was used in this analysis.

60.2.2 Bright-Field Macroscopic Imaging

Prior to imaging, each eye was placed in a custom holder to stabilize the posterior pole; this allows it to be immersed in phosphate buffered saline, minimizing surface reflectance artifact. The first set of images collected used conventional bright-field macrophotography with a Zeiss AxioCam MRC5 camera equipped with a Zoom 7000 Navitar macro video lens. Illumination was accomplished using a flexible, bifurcated fiber-optic coupled to a tungsten-halogen light source. Images were taken using Zeiss AxioVision AC Rel 4.5 software.

60.2.3 Scanning Laser Ophthalmoscope

The next set of images was collected using SLO Heidelberg Retina Angiograph 2 (HRA2, Heidelberg Engineering, Inc.) equipped with a 55° wide field objective. The SLO housing was positioned so that the lens was directed down onto the aqueous surface for optimal imaging of the fundus. A 1,000 ± 2.5 μm ruby sphere was placed on the optic nerve head to provide a reference scale. Autofluorescence (AF) and infrared (IR) images were obtained. Lesion areas were estimated based on the mean of five separate hand drawn outlines using ImageJ software.

<table>
<thead>
<tr>
<th>Table 60.1 Human donor eye information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donation #</td>
</tr>
<tr>
<td>Eye(s)</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Postmortem interval</td>
</tr>
</tbody>
</table>
60.2.4 Optical Coherence Tomography

The final set of images was collected using Spectral-domain OCT (Bioptigen, Inc.) operating at a peak wavelength of 840 and a 55 nm bandwidth with a 50° field of view (300 A-scans/B-scan by 300 B-scans/volume). The eye was positioned directly below the OCT objective.

60.3 Results

60.3.1 Normal Retina

Fundus images of #779 show an opaque appearance around the fovea consistent with edema (Fig. 60.1a). SLO AF images collect lipofuscin autofluorescence signal from the RPE. IR images penetrate farther into tissue, showing choroidal vasculature.

Fig. 60.1 Imaging characterizes a normal donor eye. (a) Macroscopic fundus image shows an opaque appearance around the fovea consistent with edema (closed arrow). (b, c) SLO AF and IR images show no pathology. (d) Dashed lines on OCT fundus image indicate B-scan image planes. (E₁−E₋₂) OCT is unremarkable at levels shown in (d) except for mild macular edema at 0 (closed arrow). The inner retina becomes opaque postmortem making retinal lamina difficult to differentiate; however, the photoreceptor layer (closed arrow), RPE (open arrow), and choroid (asterisk) remain visible. Scale = 2 mm
SLO imaging is unremarkable (Fig. 60.1b, c). OCT shows minor macular edema (Fig. 60.1d, 60.1E–E–2). However, comparison of OCT from in vivo eyes with OCT from postmortem eyes shows that postmortem changes are accompanied by the loss of distinct retinal lamella (compare Fig. 60.2a, b).

60.3.2 Macular Hole

Fundus images of #777 show an opaque appearance around the fovea consistent with edema. In addition, exudate is seen around the optic nerve (Fig. 60.3a). SLO AF images show decreased autofluorescence around the optic nerve and macula (Fig. 60.3b). SLO IR images show increased reflectance around the optic nerve and within an oval-shaped area at the center of the macula (Fig. 60.3c). OCT imaging reveals a macular hole (Fig. 60.3d). At the center of the macular hole, an isolated retinal fragment corresponds to the small area of decreased autofluorescence in Fig. 60.3b. The hole corresponds to the oval-shaped area of increased reflectance in Fig. 60.3c. The perimacular area of decreased reflectance in Fig. 60.3c is due to increased scattering of light from retinal elevation surrounding the macular hole, which attenuates signal from the choroid.

60.3.3 RPE Detachment

Fundus images of #784 OD and OS show prominent choroidal vessels and exudate around the optic nerve (Fig. 60.4a). SLO AF images of both eyes have a subtle, halo-shaped area of increased autofluorescence at the fovea (Fig. 60.4b). OCT imaging reveals bilateral, focal RPE detachment centered on the fovea (Fig. 60.4c, d). The halo-shaped area of increased autofluorescence corresponds to changes in the elevation of the RPE in the region of detachment. The AF laser penetrates the epithelial
surface at a tangential angle rather than a right angle, appearing as if the retinal thickness is increased adjacent to the detachment.

60.3.4 AMD Retina

Fundus images of #846 show a fibrovascular scar consistent with end-stage AMD (Fig. 60.5a). SLO AF imaging shows absence of autofluorescence in a large, central area similar to the fibrovascular scar (Fig. 60.5b). However, macroscopic image
estimates the lesion area to be $66.0 \pm 1.22 \text{ mm}^2$ whereas AF image estimates the lesion area to be $75.9 \pm 0.60 \text{ mm}^2$. SLO shows a 13% larger lesion than conventional bright-field macrophotography. A t test of the macroscopic lesion estimate versus the AF lesion estimate shows a significant difference ($p<0.0001$) likely due to improved contrast with SLO. OCT also reveals areas with subretinal fibrosis (Fig. 60.5C−C−2).

60.3.5 RP Retina

Fundus images of #908 show prominent choroidal vessels indicating atrophy of the overlying RPE and numerous bone spicule pigment deposits in the periphery encroaching on the macula (Fig. 60.6a). SLO AF imaging shows loss of autofluorescence consistent with RPE atrophy (Fig. 60.6b). OCT reveals thinning, degenerate retina toward the periphery and RPE detachment (Fig. 60.6C−C−2). Bone spicule pigment deposits are not evident with OCT.
Fig. 60.5 Imaging characterizes an end-stage AMD eye. (a) Macroscopic fundus image shows a fibrovascular scar (closed arrow) and a central area of RPE atrophy allowing visualization of choroidal vessels (open arrow). The ruby sphere is placed on the optic nerve head for magnification reference. Dashed lines indicate OCT image planes. (b) SLO AF image shows a large, well-defined area of decreased autofluorescence encompassing the optic nerve and macula (closed arrow) which corresponds to the central lesion in (a). Areas with autofluorescence correspond to the remaining area with RPE. C_-2-C_2: OCT B-scans indicated in (a) reveal bright collections directly above the RPE which raise the inner retinal layer and are consistent with fibrovascular scar (closed arrows). Small, dome-shaped irregularities below the RPE layer may be drusen (open arrow). Scale = 2 mm

60.4 Discussion

Although human donor eyes are invaluable to research, the vast majority are received with minimal clinical history and usually without fundus images. Here, we have attempted to address this perpetual challenge by applying the same technology used in the clinic to postmortem eyes.
In vivo imaging with SLO allows for angiography and provides detailed retinal and choroidal vasculature (Jorzik et al. 2005). Postmortem imaging with the AF and IR modes of SLO identifies areas with absent or atrophied RPE. SLO imaging with AF and IR of postmortem eyes reveals features of RPE and choroid similar to those of in vivo eyes. Potential retinal detachment, however, substantially reduces the quality of images of postmortem eyes as compared to in vivo eyes. Tissue fixatives may further exacerbate the degree of retinal detachment from the RPE-choroid complex. In addition, the retina becomes less transparent in postmortem eyes. Both conditions compromise signal collection from structures underlying the retina and contribute to reduced image quality in postmortem eyes.

Fig. 60.6 Imaging characterizes an RP eye. (a) Macroscopic fundus image shows prominent choroidal vessels indicative of RPE atrophy and bone spicule pigment deposits (closed arrow) in the periphery. The ruby sphere is placed on the optic nerve head for magnification reference. *Dashed lines* indicate OCT image planes. (b) SLO AF image shows loss of autofluorescence indicating RPE atrophy (closed arrow), particularly in the periphery and mid-periphery. C_0-C_{-2} OCT B-scans indicated in (a) reveal thin, degenerate retina at the margins (closed arrows). RPE detachment is also seen (open arrows). Scale = 2 mm
In vivo imaging with OCT shows detailed retinal architecture, including distinct retinal lamina (Yaqoob et al. 2005). It also resolves localized changes in retinal thickness between the macula and periphery. Postmortem changes mask the lamellar features of the inner retina, and allow resolution only of the photoreceptor layer, RPE, and choroid. Figure 60.2 clearly shows a difference in resolution of retinal lamina in in vivo and postmortem images. Despite the stark contrast in image quality, OCT imaging of postmortem eyes shows the thickness of the inner retina and RPE, and visualizes changes at sections throughout tissue with an in-depth resolution of several microns.

In vivo imaging is optimal; however, postmortem imaging with SLO and OCT provides more detail than the standard photographic image of the posterior pole. Information obtained from imaging regarding the location and size of retinal lesions also allows for targeted histopathology. To the best of our knowledge, the use of SLO for retinal imaging in human postmortem eyes has been reported only by two other groups (Bindewald et al. 2004; Olsen 2008). These earlier studies, however, removed the neural retina prior to imaging to improve visualization of the RPE-choroid complex. The removal of the neural retina for imaging limits the usefulness of the procedure when subsequent histology of the specimens is required. OCT has been used on human postmortem eyes primarily for corneal studies (Wolf et al. 2004; Johnson et al. 2007). OCT also has been used for retinal imaging of human postmortem eyes (Chauhan and Marshall 1999; Ugarte et al. 2006). However, this is the first time OCT has been routinely applied in conjunction with SLO and macroscopic imaging to screen and characterize a range of retinal pathology in postmortem donor eyes.

In summary, the use of both SLO and OCT in the initial assessment of postmortem eyes prior to histological analysis provides useful information about locations and types of different retinal lesions. As described above, #777 and #784 appeared normal in macroscopic fundus images, but in fact were found to have a macular hole and bilateral RPE detachment, respectively. Without knowing the clinical history of #777, it is impossible to determine if the isolated retinal fragment at the base of the macular hole was present at the time of death or if it was an artifact of fixation. Similarly, it is unknown if the bilateral RPE detachments were present at the time of death or were fixation artifacts. Aside from finding lesions that were not detected by macroscopic imaging, SLO and OCT further characterized known retinal lesions. The combination of SLO and OCT shows the full extent of retinal pathology and clarifies the locations of specific inclusions. Despite the valuable information imaging provides, it is important to be wary of using a single imaging instrument which may provide an incomplete picture of retinal pathology. The combination of SLO and OCT is critical to accurately interpreting pathology, and provides a more thorough means to identify retinal lesions in donor eyes.

Acknowledgments This work was supported by the Foundation Fighting Blindness, Columbia, MD and Research to Prevent Blindness, New York, NY. Figure 60.2b was reprinted with permission from Bioptigen, Inc. The authors thank Charlie Kaul and Dr. Lisa Kuttner-Kondo for their constructive comments and enthusiastic support.
References

Histopathology and Functional Correlations in a Patient with a Mutation in RPE65, the Gene for Retinol Isomerase

Vera L. Bonilha, Mary E. Rayborn, Yong Li, Gregory H. Grossman, Eliot L. Berson, and Joe G. Hollyfield

PURPOSE. Here the authors describe the structural features of the retina and retinal pigment epithelium (RPE) in postmortem donor eyes of a 56-year-old patient with a homozygous missense RPE65 mutation (Ala132Thr) and correlate the pathology with the patient’s visual function last measured at age 51.

METHODS. Eyes were enucleated within 13.5 hours after death. Representative areas from the macula and periphery were processed for light and electron microscopy. Immunofluorescence was used to localize the distribution of RPE65, rhodopsin, and cone arrestin. The autofluorescence in the RPE was compared with that of two normal eyes from age-similar donors.

RESULTS. Histologic examination revealed the loss of rods and cones across most areas of the retina, attenuated retinal vessels, and RPE thinning in both eyes. A small number of highly disorganized cones were present in the macula that showed simultaneous labeling with cone arrestin and red/green or blue opsins. RPE65 immunoreactivity and RPE autofluorescence were reduced compared with control eyes in all areas studied. Rhodopsin labeling was observed in rods in the far periphery. The optic nerve showed a reduced number of axons.

CONCLUSIONS. The clinical findings of reduced visual acuity, constricted fields, and reduced electroretinograms (ERGs) 5 years before death correlated with the small number of cones present in the macula and the extensive loss of photoreceptors in the periphery. The absence of autofluorescence in the RPE suggests that photoreceptor cells were probably missing across the retina for extended periods of time. Possible mechanisms that could lead to photoreceptor cell death are discussed. (Invest Ophthalmol Vis Sci. 2011;52:8381–8392) DOI:10.1167/iovs.11-7973

Lieber congenital amaurosis (LCA) comprises a group of genetic disorders in which visual loss or dysfunction is present at birth. Patients typically have hyperopia and nystagmus and reduced electroretinograms (ERGs). The extent of visual loss varies from patient to patient but is usually severe. Mutations have been identified in 15 genes in persons with LCA, each of which is a recessive disorder.1,2

Mutations in the RPE65 gene account for approximately 7% of LCA. RPE65 is uniquely expressed in the retinal pigment epithelium (RPE), where the protein, an enzyme, binds and converts all-trans retinyl ester to 11-cis retinol.5–9 Retinol isomerization is an essential enzymatic step required for functional vision to occur in rod and cone photoreceptors. More than 60 mutations in the RPE65 gene have been documented in LCA patients. Mutations have been reported in each of the 14 exons of the RPE65 gene and its boundaries.9–14 Typically, mutations in the RPE65 gene result in impaired vision from birth and typically progress to legal blindness in the third decade of life.9,11,12,15,16

Mutations in RPE65 do not necessarily result in early loss of photoreceptors. For example, studies of dog retinas with a naturally occurring RPE65 mutation and mouse retinas that are missing the RPE65 gene show structurally intact photoreceptors visible by optical coherence tomography that appear nonfunctional because of the inability of the RPE to generate 11-cis retinal. The sparing of photoreceptors has allowed RPE65 gene replacement therapy to restore this critical retinol isomerase activity to the RPE with the accompanying restoration of visual function.17,18

In this report we describe the pathology and clinical findings in a woman with a homozygous mutation (Ala132Thr) in the RPE65 gene.1,2 Unlike most persons with RPE65 mutations, this patient retained some vision into her early fifties. To our knowledge this is the first study of adult postmortem donor eyes from a patient with a homozygous recessive mutation in the RPE65 gene.

METHODS

Clinical evaluations were carried out at the Harvard Medical School, Massachusetts Eye and Ear Infirmary (Boston, MA). The research conformed to the tenets of the Declaration of Helsinki.

Tissue Acquisition and Fixation

The patient was a registered eye donor with the Foundation Fighting Blindness and the Berman-Gund Laboratory. Eyes were enucleated 13.5 hours postmortem and fixed in 4% paraformaldehyde and 0.5% glutaraldehyde in phosphate buffer. After 1 month in fixative, the globes were transferred and stored in 2% paraformaldehyde in PBS. Normal postmortem donor eyes from a 60-year-old woman and a 61-year-old man were used as controls.
Immunohistochemistry

Small areas from the macula (OD and OS) and peripheral eye wall (OD) were cut and infused successively with 10% and 20% sucrose in PBS, and embedded in optimum temperature cutting compound (Tissue-Tek 4583; Miles Inc., Elkhart, IN). Ten-micrometer cryosections were cut on a cryostat (HM 505E; Microm, Walldorf, Germany) equipped with a tape-transfer system (Cryojane; Instrumedics, Inc., Hackensack, NJ). Before labeling, embedding medium was removed through two consecutive PBS incubations for 20 minutes. The tissue was then processed for immunofluorescence labeling. Sections

Figure 1. Findings in patient with RPE65 gene mutation. (A, B) Goldmann visual fields to a V-4e white test light and I-4e white test light at age 22. (C, D) Goldmann visual fields to a V-4e white test light at age 51. (E, F) Fundus photographs OD and OS at age 51.
were blocked in PBS supplemented with 1% BSA (PBS/BSA) for 30 minutes and incubated with monoclonal antibody B6-30N to rhodopsin (1:100; from Paul Hargrave, University of Florida, Gainesville, FL) and polyclonal antibodies PETLET to RPE65 (1:500; from Rosalie Crouch, University of South Carolina, Charleston, SC), to red/green (AB5405, 1:1200; Chemicon), to retinal nuclear opsin, and to monoclonal antibody 766 to cone arrestin (1:100; from Peter MacLeish, Morehouse School of Medicine, Atlanta, GA) in PBS/BSA overnight at 4°C. Cell nuclei were labeled with iodide (TO-PRO-3; blue, 1 μg/mL; Molecular Probes, Eugene, OR). Secondary antibody goat anti-rabbit IgG (1:100) was labeled with Alexa Fluor 488 (green; Molecular Probes) while goat anti-rabbit IgG was labeled with Alexa Fluor 488 (red; Molecular Probes) while goat anti-mouse IgG (1:1000) was labeled with Alexa Fluor 488 (green; Molecular Probes) while goat anti-rabbit IgG was labeled with Alexa Fluor 488 (red; Molecular Probes). Sections were analyzed using a laser scanning confocal microscope (TCS-SP2; Leica, Exton, PA) equipped with a charge-coupled device mono-

Results

Clinical Findings

The patient was first examined by one of the authors (ELB) at age 22, at which time she reported night blindness and limited side vision since childhood. At the initial examination, she had best-corrected visual acuity of 20/40 (right eye, OD) and 20/30 (left eye, OS). Her visual fields were constricted to an 11° diameter centrally, with peripheral islands in both eyes with a V-4e white test light (Figs. 1A, 1B). Slit lamp examination showed clear lenses in both eyes (OU). Fundus examination showed a normal disc, retinal arteriolar attenuation, and bone spicule pigmentation around the midperiphery in each eye. Dark adaption OS with an 11° diameter white test light showed a threshold 3.5 log units above normal after 45 minutes of dark adaptation. Rod and cone responses were nondetectable (≤10 μV) with conventional full-field ERG testing. With narrow bandpass filtering and computer averaging, full-field 30-Hz cone responses were 8.4 μV OU (lower normal is 50 μV).

She was most recently examined by us at age 51, 5 years before her death. At that time, she had hand motions vision OD and 20/200 OS. Visual field testing showed reduction of the temporal island in each eye, no detectable central field OD, and only a 4° central field diameter OS (Figs. 1C, 1D). Slit lamp examination revealed central posterior subcapsular cataracts in both eyes. Fundus examination of each eye showed slight waxy pallor of the disc, a granular macula, attenuated retinal vessels, and bone spicule pigmentation.

Immunofluorescence Montages

Sections labeled with antibodies to cones and rods were stained as described and were imaged with a fluorescence microscope (BX61; Olympus, Tokyo, Japan) equipped with a charge-coupled device monochrome camera (Hamamatsu Photonics, Bridgewater, NJ). Each montage image represented a composition of a series of individual photomicrographs collected throughout the whole tissue with 10× and 20× objectives using a computer-controlled motorized x-y stage (Proscan II; Prior Scientific Inc., Rockland, MA) and reconstructed into one image (SlideBook software, version 4.2; Intelligent Imaging Innovations, Denver, CO).

Semithin Epon Sections and Ultrastructural Analysis

A small area of the retina/RPE/choroid tissue from both the macular region (OS) and the periphery (OD) of the RPE65 donor and matched-controls were fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer, post-fixed in 1% osmium tetroxide in 0.1 M cacodylate buffer, dehydrated in ethanol, and embedded in Epon. One-micrometer plastic sections of both samples were stained with toluidine blue and examined and photographed by light microscopy with a microscope (Axiohot; Carl Zeiss, Jena, Germany) equipped with a high-sensitivity charge-coupled device camera (C5810; Hamamatsu Photonics, Hamamatsu, Japan). Thin sections were prepared, and electron micrographs were taken on a 200-kV digital electron microscope (Tecnai 20; Philips, Hillsboro, OR) using a Gatan (Pleasanton, CA) image filter and a digital camera at 3600 diameters and were printed at identical magnifications.
around the periphery (Figs. 1E, 1F). A small central macular hole could be visualized OD. No macular edema could be seen. Dark-adaptation OS showed a final threshold still elevated 3.5 log units above normal. Narrow band-passed, computer-averaged, 30-Hz cone ERGs were now only 0.50 μV (OD) and 0.67 μV (OS). Applanation tensions of 10 mm Hg (OD) and 12 mm Hg (OS) were recorded during her visit at age 51.

Histopathology of the Retina and Optic Nerve

Semithin sections of Epon-embedded RPE65 eye tissue were analyzed and compared with equivalent areas in an age-similar control eye (Fig. 2). A schematic drawing of the postmortem donor eye under study depicts the regions harvested and processed for both histologic and immunohistologic analysis: inferior (I), superior (S), temporal (T), nasal (N), retina, and macula (M). The macula of the left eye (Fig. 2B) was swollen. It contained a prominent preretinal (epiretinal) membrane composed of fibroblastlike cells that were vitreal to a connective tissue lamina. In each quadrant of the periphery, the retina (Figs. 2D–G) displayed different degrees of degeneration when compared with the morphology of the control retina in the periphery (Fig. 2C) and macula (Fig. 2A). No layers of nuclei (ganglion, inner, and outer) were evident in any of the quadrants of the retinal periphery analyzed. Nuclei were randomly distributed throughout the disorganized retina. The inner and outer plexiform layers were also not evident. An occasional stunted photoreceptor inner and outer segment projecting from the outer retinal surface was evident in the superior quadrant (Fig. 2E, arrowheads). A few pigmented cells were observed invading the degenerate retina of the temporal and nasal quadrants (Figs. 2F, 2G, arrows). The vitreal surface of the retina was formed of glial fibers ending at the inner limiting membrane. The RPE layer was continuous below the degenerate retina, but RPE cells had reduced apical to basal height compared with the RPE in age-similar control eyes.

Cross-sections of the optic nerve were taken approximately 1 mm behind the lamina cribrosa (Fig. 3). A few myelinated axons were found in the optic nerve of the RPE65 donor (Figs. 3B, 3D) compared with sections from the control nerves at equivalent retrolaminar locations (Figs. 3A, 3C). Only a few nuclei (possible astrocytes) were evident (Fig. 3D), and the diameters of the central retinal artery and vein were severely reduced in diameter (Fig. 3F) compared with control (Fig. 3E). The paucity of axons in the optic nerve was consistent with the absence of distinct ganglion cells in the RPE65 donor retina.

Immunohistocytochemistry Studies

The RPE65 postmortem donor eye displayed a continuous but much decreased signal of RPE65 immunoreactivity in the macula compared with the control eye (Figs. 4A–D). In some areas of the macula, multilayered RPE65-positive cells could be observed bulging into the subretinal space (Figs. 4E, 4F). In the peripheral retina, RPE65 immunoreactivity was patchy and sparse, probably related to the RPE attenuation and thinning (Figs. 4G, 4H).

To follow some of the specific molecular changes in the remaining photoreceptors, the retina of the postmortem RPE65 donor was also evaluated for the distribution of cone arrestin in the macula of each eye (Fig. 5) and in the periphery (Fig. 6). Cone arrestin distribution was compared with that in a control eye in similar regions. Individual images collected (OD) and blue opsin (Fig. 8H; Supplementary Fig. S1H) were restricted to the outer segment in the macula (Fig. 8) and periphery (Supplementary Fig. S1A, S1G; http://www iovs orglookup/suppldoi:10.1167iovs.11-7973/-DCSupplemental) whereas red/green or blue opsin and cone arrestin antibodies. As described, cone arrestin is distributed through the entire cytoplasm of cones (Figs. 8A, 8G; Supplementary Figs. S1A, S1G; http://www iovs org/lookup/suppldoi:10.1167/iovs.11-7973/-DCSupplemental) with red/green opsin (Fig. 8B; Supplementary Fig. S1B; http://www iovs org/lookup/suppldoi:10.1167/iovs.11-7973/-DCSupplemental) and blue opsin (Fig. 8H; Supplementary Fig. S1H; http://www iovs org/lookup/suppldoi:10.1167/iovs.11-7973/-DCSupplemental) are restricted to the outer segment in the retina.
control eyes. In the RPE65 eye, red/green opsin displayed a diffuse, cytoplasmic distribution in the macula (Fig. 8E) and retinal periphery (Supplementary Fig. S1E; http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.11-7973/-/DCSupplemental).

Interestingly, blue opsin displayed a decreased but membrane-associated distribution in the macula (Fig. 8K) and periphery (Supplementary Fig. S1K; http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.11-7973/-/DCSupplemental) compared with the control tissue distribution. As described, cone arrestin labeling in the RPE65 donor eye macula highlighted the abnormal distribution of cones (Figs. 8D, 8J) whereas in the periphery only severely degenerate cones remained (Supplementary Figs. S1D, S1J; http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.11-7973/-/DCSupplemental).

Rod photoreceptors were identified with a rhodopsin antibody. After antibody labeling, individual overlapping images were collected throughout the entire tissue expanse from each retinal quadrant studied and were used to construct a montage (Fig. 9). Comparison of the samples showed that rhodopsin labeling was mostly absent in the RPE65 eye. A few rods were detected in the far periphery of the temporal quadrant of the RPE65 eye (Fig. 9D, arrows).

Rhodopsin is normally localized only to the outer segment (Fig. 10A), but in the few rods found in the RPE65 eye, rhodopsin was distributed throughout the entire cell body (Figs. 10B-F). Comparison of the samples showed that rods were significantly decreased in all the observed regions; the remaining rods had lost the normal rodlike shape and were much shorter than rods in control retinas. Additionally, rhodopsin-labeled neuritelike processes were commonly observed extending into the inner retina.

Photoactivation of rhodopsin and cone opsin results in the isomerization of 11-cis retinal to all-trans retinal, which is then recycled to the RPE for regeneration in a pathway termed the retinoid visual cycle. During aging, a functional visual cycle is necessary for the RPE to accumulate lipofuscin, the fluorescent storage material that accumulates in RPE cells. We compared the relative amount of autofluorescence in the RPE postmortem donor eye with control RPE. RPE in the macula (Fig. 11B) showed a substantial decrease of autofluorescence compared with RPE in the macula of the age-similar control eyes (Fig. 11A). Finally, in the periphery, the RPE in the RPE65 donor retina showed a paucity of autofluorescence (Figs. 11D–G) compared with an age-similar control RPE (Fig. 11C).
Ultrastructural Studies of the RPE and Bruch’s Membrane

Transmission electron microscopy of RPE and Bruch’s membrane in the fovea (Figs. 12C, 12D) and periphery (Figs. 12E–H) of the RPE65 donor and an age-similar control eye (Figs. 12A, 12B) was performed, and findings were compared. The control RPE displayed the expected apical microvilli (Fig. 12A) and basal infoldings (Fig. 12B). In contrast, the RPE65 postmortem donor eye showed degenerative changes in the RPE in each quadrant studied. In the macula, apical microvilli were absent, and pleomorphic inclusions were common (Figs. 12C, 12D). In the nasal quadrant, apical microvilli were present (Fig. 12E); however, the basal region was characterized by the presence of electron-dense material beneath the RPE cells (Fig. 12F). In the inferior quadrant, inflammatory cells were present above the RPE in some areas (data not shown). A few short microvilli remained on their apical surface (Fig. 12G). Examination of the RPE basal surface revealed a complete absence of basal infoldings and the presence of a debris zone beneath the RPE. Bruch’s membrane had lost the pentalaminar structure and was disorganized in this area (Fig. 12H).

Discussion

This study reveals for the first time the histologic changes present in an adult retina of a patient with an RPE65 mutation. The Ala132Thr site mutation in exon 5 of the RPE65 gene was previously identified in this patient and several family mem-

ers. 12 The functional consequence of this specific RPE65 mutation was also studied previously in vitro, in 293 cells. 5 Data showed that mutation to threonine at residue 132 lead to 50% reduction in the activity of isomerization potential of RPE65. Some remaining activity of RPE65 enzyme most likely contributed to the long retention of vision measured in this patient.

Several studies 19–21 have evaluated the retinas in RPE65-deficient (LCA) patients in vivo through the use of optical coherence tomography combined with visual function. These studies determined that despite severely reduced early loss of cone vision, many persons with RPE65 mutations had near-normal foveal microstructure but most were lacking rods. 19–21 Observation of the fovea also showed that patients with RPE65 deficiency exhibited some cone photoreceptor loss, even at the youngest ages. However, residual cone photoreceptor function persisted for decades. 20 In fact, these patients have differing amounts of cone function, with some older patients having more function than younger patients. 20, 22, 23 Based on these studies it is likely that gene therapy will have to be targeted to different regions, possibly on a case-by-case basis.

Figure 6. Significant reduction in the cones in the periphery of an RPE65 postmortem donor eye. Montages of photomicrographs of the periphery tissue from the RPE65 donor (B–E) and control eyes (A) were analyzed using a cone arrestin antibody (7G6). Comparison of the samples showed that cones were mostly absent in the affected retina in inferior (B), superior (C), temporal (D), and nasal (E) regions. P, periphery; C, central. Scale bar, 500 μm.

Figure 7. Disorganized morphology of the cones remaining in the retina of an RPE65 postmortem donor eye. High-magnification comparison of the control and RPE65 donor retina showed that cone arrestin was distributed along the entire plasma membrane of this cone type, from the tip of the outer segment to the synaptic base in the control retina (A). Cones were present in the macula of the RPE65 donor, but synapses were not visualized (B). On the other hand, cones were mostly absent in the periphery of the RPE65 mutant retina in the inferior (C), superior (D), temporal (E), and nasal (F) quadrants. Scale bar, 40 μm.
Data presented in this study demonstrated that the RPE65 donor retinas showed generalized loss of rod and cone photoreceptors except in the central macula, with RPE thinning in most regions of the peripheral retina. Together with the data reported on LCA patients, the findings we report here, though of interest, cannot necessarily be regarded as representative of the pathology in all RPE65 mutations.

Our study probed the distribution of cone arrestin, red/green opsin, and blue opsin in the RPE65 eye and compared it with the distribution in control eyes. A previous study has shown that abnormal cones, from RP donor eyes with rhodopsin mutations, displayed loss of immunolabeling with anti-cone arrestin. However, in the present RPE65 donor eye, virtually all cones that labeled with anti-cone arrestin also showed labeling with the red/green or blue opsin antibodies. This difference in cone labeling may be attributed to different pathogenic mechanisms of the involved retinal degenerations.

![Figure 8](image-url) Disorganized expression of red/green and blue opsins in the cones in the macula of an RPE65 postmortem donor eye. The distribution of cones was also analyzed in control and RPE65 eyes labeled with the cone arrestin (7G6), red/green opsin (AB5405), and blue opsin (AB5407) antibodies. Control retinas displayed cone arrestin distributed along the entire cone cell body (A, G), however the RPE65 donor retina displayed disorganized cones (D, J). In the control eyes, red/green (B) and blue (H) opsins were restricted to the cone outer segments. In the RPE65 eyes, the red/green opsin displayed a more diffuse staining (E) that overlapped with cone arrestin. However, blue opsin localization was mostly to the cone cell boundaries (K, arrows). Overlaid images are shown in C, F, I, L. Scale bar, 40 μm.
Our data show that the better visual acuity the patient had in the right eye when tested 5 years earlier suggests that very few cones are required for 20/200 vision. In addition, we observed degeneration of the optic nerve and an indistinct ganglion cell layer. This is consistent with previous reports describing optic atrophy or optic pallor as one of the features associated with some forms of LCA.15,25–31

Previously, Porto et al.32 published a histopathologic description of a voluntarily aborted 33-week-old fetus with LCA caused by a homozygous Cyst330Tyr missense mutation in RPE65. The fetal retina displayed reduced photoreceptor density, a thin ONL, decreased rod and cone opsin immunoreactivity, and aberrant synaptic and inner retinal organization. Ultrastructural examination revealed the presence of lipid and vesicular inclusions not seen in normal RPE. In addition, the Cyst330Tyr eyes demonstrated thickening, detachment, and collagen fibril disorganization in the underlying Bruch’s membrane. The choroid was distended and abnormally vascularized compared with controls.32

The clinical description of our patient is similar to that of other RPE65 LCA patients previously described and includes measurable visual acuities, Goldmann visual fields, and small ERG amplitudes followed by slow deterioration of their visual function when measured over 20 years.8,15

Our study revealed a significant decrease in the accumulation of autofluorescent material in the RPE in the macula and periphery and is in agreement with observations carried out in LCA patients and in RPE65 knockout mice. Autofluorescence measures lipofuscin accumulation in the RPE, which is related to shed photoreceptor disc segments and requires vitamin A derivatives (retinoids). It allows for the visualization of disease-specific distributions of lipofuscin in the RPE, often not visible on ophthalmoscopy. Lorenz et al.34 found absent or minimal autofluorescence in all LCA patients with compound heterozygous or homozygous RPE65 mutations, whereas autofluorescence...
cence was normal in the heterozygous parents and in LCA patients without mutations in RPE65 but with GUCY2D mutations. In the Rpe65 knockout mice, RPE lipofuscin fluorophore accumulation was almost abolished in 12- to 13-month-old mice, indicating that the formation of RPE lipofuscin fluorophores is almost completely dependent on a normal visual cycle.35,36

The immunoreactivity of the RPE in the RPE65 postmortem donor eye when probed with the RPE65 antibody clearly indicates that RPE65 protein was present in this tissue. Although the functional consequences of the Ala132Thr substitution in the protein caused by the specific mutation in the RPE65 gene of this donor are unknown, the severe progressive loss of rod and cone photoreceptors documented during her life suggests that this mutation results in the production of nonfunctional or minimally functional retinol isomerase by the RPE cells. Because some functional vision was retained in the remaining cones of the macula, a question arises about the source of the retinol isomerase that produces the chromophore used by these foveal cones. Recent studies provide evidence that in addition to the retinol isomerase in the RPE (RPE65), there is another pathway in the outer retina for the generation of 11-cis retinoid used by cone photoreceptors that is independent of RPE65 activity. It is possible that some foveal cones in this RPE65 postmortem donor eye retained function because of the presence of this other pathway for the generation of a photoactive chromophore. Alternatively, although all cones failed comparably, the fovea failed last possibly because the density of cones was highest in this region.

Recently, two-photon microscopy revealed specialized storage sites for retinyl esters that were referred to as retinosomes or retinyl ester storage particles, taking advantage of the intrinsic fluorescence of all-trans retinyl esters in the living mouse eye.39–41 Retinosomes were shown to correspond to vacuole-like structures, with translucent inclusions observed with electron microscopy. Our observations of the ultrastructure in this RPE65 donor eye revealed the presence of several cytoplasmic pleomorphic inclusions similar in structure to the retinosomes described in the RPE of wild-type and RPE65+/− mice. However, because the detection of retinosomes is carried out in vivo, we could not confirm the presence of these structures in the RPE of the RPE65 postmortem donor eye.

Several animal models with RPE65 mutations have been characterized and used in studies that have advanced our knowledge of LCA. In the knockout mouse model of the RPE65 gene, RPE−/−, rods and cones are present at birth and appear normal with intact outer segments until 15 weeks; however, the outer nuclear layer displays only seven layers at 28 weeks. The rod ERG is absent from the beginning, but the cone ERG is intact. Furthermore, the rhodopsin molecule is absent.6 Therefore, the RPE−/− mouse model likely represents a rod-cone degeneration, with much more rod than cone dis-
In animals with RPE65 deficiency, gene transfer resulted in efficient RPE transduction, close to normal levels of rhodopsin and 11-cis retinal, and improved ERG responses with consequent improved visual acuity and visual guided behavior leading the way to consideration of human trials for this potentially reversible biochemical defect. In three clinical trials involving the administration of adenovirus vector to replace for RPE65 deficiency and included nine patients. All the trials targeted the clinically worse eye of adult patients with advanced disease. The short-term results from these ongoing trials were recently reported with improvements in light sensitivity, ambulation through an obstacle course, and nystagmus frequency in some patients, but the results were less promising in other patients. All patients still had nonrecordable ERGs, which was in clear contrast to the results obtained in the treatment studies using the canine model of RPE65 deficiency.

Since the first clinical trial results were reported, clinical data on >30 patients are now available. As expected, the clinical benefit remained stable in all patients, and no severe adverse effects were observed. Overall, younger patients responded better to treatment and had greater improvements in light sensitivity than older patients. Because of the extensive loss of photoreceptors, the degeneration of the optic nerve, and the indistinct ganglion cell layer observed in the retina of the RPE65 donor described here, it seems unlikely that gene therapy would result in extensive recovery of vision in a patient with retinal degeneration this advanced.

References

12. Morimoto H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal re-

INTRODUCTION

The Goldmann-Favre syndrome (GFS) is an autosomal recessive distinctive vitreoretinal degenerative disorder initially described in two separate reports in 1957 and 1958. GFS is characterized by night blindness, pigmentary degeneration, macular and peripheral retinoschisis, posterior subcapsular cataract, markedly abnormal or nondetectable electroretinograms, and degenerative vitreous changes, such as liquefaction, and the presence of strands and/or bands. Since the original description, a number of other cases have been reported confirming that this is a clinically recognizable disease but it is now known that the specific clinical features vary among pedigrees.

More recently, it was proposed that the GFS is a phenotypic variant of the enhanced S-cone syndrome, since in both retinal dysfunctions the patients display hypersensitivity to short-wavelength and their electroretinograms have greater amplitudes to short-wavelength (e.g., blue) light flashes than to long-wavelength (e.g., orange) light flashes.

The GFS is caused by loss-of-function mutations in the NR2E3 gene (also known as PNR). The NR2E3 gene encodes a retinal nuclear receptor recently discovered to be a ligand-dependent transcription factor specifically found in photoreceptors. Although the morphology and physiology of photoreceptors

Retinal pathology of a patient with Goldmann-Favre Syndrome

Vera L. Bonilha1, Gerald A. Fishman2, Mary E. Rayborn1, and Joe G. Hollyfield1

1The Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
2Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, Illinois, USA

ABSTRACT

Purpose: To define the retinal pathology in an 88-year-old male affected with Goldmann-Favre syndrome with a 2bp 5′ A>C splice site mutation in the NR2E3 gene.

Methods: Retinal tissue from the macula and periphery was processed for immunohistochemistry. Perimacular retina was processed for transmission electron microscopy. Cryosections were studied by indirect immunofluorescence, using well-characterized antibodies to rhodopsin, cone cytoplasm, and cone opsins. The affected donor eye was compared to a postmortem matched normal eye.

Results: The retina was highly disorganized without laminar organization. The RPE was discontinuous in some perimacular regions. Large (>1mm) spherical electrondense melanosomes were observed in the RPE and choroid by TEM. Rods were virtually absent in the affected retina. Cones were present in the macula, but were mostly absent from the retinal periphery. In addition, cone rosettes were observed in the perimacular area. Both red/green and blue cone opsins were distributed along the entire cellular expanse of the cone photoreceptors in the affected eye, but were restricted to the cone outer segments in the control retina.

Conclusions: The histological data obtained from the retina of an elderly male patient with Goldmann-Favre syndrome showed an absence of rods and abnormal distribution of red/green and blue cone opsins.

KEYWORDS: Goldmann-Favre syndrome; Cone opsins; Histology; Immunohistochemistry; Pigment clumping; Retinal degeneration; Rhodopsin
are well documented, the developmental pathways from a multipotent retinal progenitor to a committed precursor and a terminally differentiated photoreceptor are only beginning to be elucidated. It is thought that NR2E3 controls photoreceptor differentiation by repressing the expression of cone-specific genes in rods. However, it is not known how the mutation in this gene leads to the degeneration of the RPE and retina.

Previously, a histopathological analysis from a full-thickness eye-wall biopsy of the eye of a young patient affected by GFS was reported. In the present study we analyzed the morphology of the retina and the distribution of photoreceptor markers in a donor eye from a male donor affected by GFS. To our knowledge this is the first immunohistological study performed in a GFS affected eye.

MATERIALS AND METHODS

Patient Information

The donor was an 88-year-old man who died from congestive heart failure. He was an affected member of a family with autosomal recessive Goldmann-Favre syndrome. The eyes were obtained through the National Retinitis Pigmentosa Foundation Donor Program (donation number #816). The donor had an ocular exam 1 year prior to his death.

The clinical evaluation of the patient was carried out at the University of Illinois with the approval of the Institutional Review Board (IRB) at the University of Illinois Medical Center. However, since this is a single case report, IRB approval was not needed for this project.

Histopathology

The immunocytochemistry analysis was performed at the Cleveland Clinic, where use of human tissues obtained after death is exempt from IRB approval. The donor globes were fixed 12 hrs postmortem in a mixture of 4% paraformaldehyde and 0.5% glutaraldehyde made in 0.1M phosphate buffer, pH 7.3. After 1 month in fixative, the globes were transferred and stored in 2% paraformaldehyde prepared in the same buffer. The eyes from a 78-year-old male and a 91-year-old male were used as controls, and were fixed 4.5hr and 8.5hr postmortem in 2% paraformaldehyde made in the same buffer. Tissue from the macula and periphery were cut, and the tissue was infused successively with 10% and 20% sucrose in PBS, and embedded in Tissue-Tek ‘4583’ (Miles Inc., Elkhart, IN). Ten μm cryosections were cut on a cryostat HM 505E (Microm, Walldorf, Germany) equipped with a Cryojane Tape-Transfer system (Instrumedics, Inc., Hackensack, NJ).

Prior to labeling, embedding medium was removed through two consecutive PBS incubations for 20min. The tissue was then processed for immunofluorescence labeling as previously described. Briefly, tissues were blocked in PBS supplemented with 1% BSA (PBS/BSA) for 30 min and incubated with the antibodies in PBS/BSA overnight at 4°C. Cryosections of both the matched control and affected donor tissues were labeled with the following antibodies: rabbit polyclonal antibody AB5407 to blue cone opsins (1: 1200, Chemicon International, Inc., Temecula, CA), rabbit polyclonal antibody AB5405 to red/green cone opsins (1: 1200, Chemicon International, Inc., Temecula, CA), monoclonal antibody B6-30N to rhodopsin (1:50, from Dr. P. Hargrave, University of Florida, Gainesville, FL, U.S.A.), and the monoclonal antibody 7G6 to cone arrestin (1:100, from Dr. P. MacLeish, Morehouse School of Medicine, Atlanta, GA). Cell nuclei were labeled with TO-PRO®-3 iodide (1mg/ml, Molecular Probes, Eugene, OR). Secondary antibodies (goat anti-mouse or anti-rabbit IgG; 1:1000) were labeled with Alexa Fluor 488 (green; Molecular Probes). Sections were analyzed using a Leica laser scanning confocal microscope (TCS-SP2, Leica, Exton, PA). A series of 1 μm xy (en face) sections were collected. Each individual xy image of the retinas stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). Microscopic panels were composed using AdobePhotoshop CS3 (Adobe, San Jose, CA).

Ultrastructural Analysis

A small area of the retina/RPE/choroid tissue from the perimacula region of the affected donor and matched-controls (78- and 91-year-old males with 4.5 and 7.5hr postmortem) were fixed in 2.5% glutaraldehyde and 0.1M cacodylate buffer, sequentially dehydrated in ethanol and embedded in Epon as previously reported. One μm plastic sections of both samples were stained with toluidine blue and examined and photographed by light microscopy with a Zeiss Axioshot microscope (Zeiss) equipped with a Hamamatsu C5810 camera (Hamamatsu Photonics, Bridgewater, NJ, USA). Thin sections were prepared and electron micrographs were taken on a Tecnai 20 200kV digital electron microscope (Philips, Hillsboro, OR) using a Gatan image filter and digital camera (Gatan, Inc., Warrendale, PA, USA) at 3600 diameters and were printed at identical magnifications.
RESULTS

Clinical Findings

The patient was initially seen at age 57 years with a history of poor night vision for as long as he could remember. He also complained of blurred central vision and impairment of his peripheral visual field. His family pedigree showed that of five siblings, a deceased sister was known to have had poor vision from an early age.

He was last seen for a follow-up eye examination in February 2006 at 87 years of age which was 1 year prior to his death. At that time, his visual acuity was correctable to 20/400 in the right eye and 20/200 in the left. The corneas were clear and he had bilateral posterior capsule intraocular lens implants. Ocular pressures by applanation were 15 mmHg in each eye.

His retinal examination showed atrophic-appearing changes in the macula of each eye. The retinal vessels were attenuated and the optic disc in each eye showed a ‘waxy’ appearing atrophy. The peripheral retina showed extensive pigment clumping, which was spherical in appearance and present for 360°. Predominantly in the inferotemporal quadrant, there was a peripheral retinoschisis in each eye. Goldmann kinetic visual fields obtained 4 years prior to his death showed severe concentric restriction to even a large V4e test target in each eye.

A 2bp 5’ A>C splice site mutation in the NR2E3 gene had been previously identified.

Morphologic Study

Semi-thin sections of epon-embedded GFS donor tissue were analyzed and compared to age-similar controls (Figure 1). The fundus image of the posterior pole of the GFS patient is depicted in Figure 1A, highlighting hyperpigmentation (white arrowheads) and peripheral retinoschisis (white *) (A); both periphery and perimacular tissues were harvested and processed for observation in both the morphological and ultrastructural assays. The retina of the GFS affected donor displayed different degrees of retinal degeneration in each of the regions observed when compared to the morphology of the control retina in the perimacular (Figure 1B) region of the eye. Observation at low magnification of both perimacula (Figure 1C) and periphery tissue (Figure 1E) demonstrated sparse inner and outer nuclear layers with stunted photoreceptor inner and outer segments. A thin, restricted area of pigmented RPE cells was observed in the perimacular retina (Figure 1, C and D, arrows) while a continuous layer of pigmented RPE cells was observed in the periphery (Figure 1E) of the affected donor. High magnification observation of the affected retina in the periphery (Figure 1F, arrowheads) but not in the perimacular region (Figure 1D) showed the presence of several areas of pigment clumping. In addition, tissue from the inferotemporal quadrant was also evaluated (Figures 1, G and H). This region contained a prominent pre-retina (epiretinal) membrane composed of a monolayer of fibroblast-like cells that were separated from the retina by a connective tissue-like matrix that was free of cells (Figures 1, H and G, *). The separation of this membrane from the retinal surface varied from 10 to 40μm. This membrane was not observed in the other areas of the retina examined.

Immunofluorescence Study

To further understand some of the molecular changes associated with the GFS phenotype in this affected donor, tissue from the periphery and macula of his right eye was processed for cryosectioning and immunofluorescence. Initially, the distribution of rhodopsin was analyzed in both the symptomatic carrier and a matched-control eye (Figure 2, A–D). Rhodopsin was absent in both the periphery (Figure 2B) and perimacular (Figures 2, C and D) area of the GFS affected retina. This observation was in sharp contrast to the presence of rhodopsin in the outer segments observed in the control retina (Figure 2A).

In addition, cryosections were also labeled with cone specific markers. Initially, the distribution of the cone cytoplasmic marker 7G6 was analyzed in both the GFS affected donor and a matched-control eye (Figures 3, A–D). In the GFS affected retina, a complete absence of cones was observed in the periphery (Figure 3B). However, in the perimacular area, a high density of cones (Figure 3C) was observed together with the presence of several rosettes (Figure 3D). In contrast to cones in the control sample (Figure 3A), the cones in the GFS affected retina did not display a synaptic base (Figures 3, B–D). Moreover, cell nuclei, labeled with TO-PRO-3, displayed a significant difference in the organization of the all retinal cell types when compared to the matched control.

Additional characterization of the GFS affected donor also included the labeling of this retina with antibodies directed to red/green cone opsin. The control retina displayed the red/green cone opsin restricted to its outer segments (Figure 4A). However, a striking abnormal distribution of the red/green opsins throughout the entire cone cell body was observed in the perimacular regions of the affected...
FIGURE 1 Degeneration in the retina of a Goldmann-Favre syndrome (GFS) affected donor. Human 1μm plastic sections of both a matched control (B) and the affected GFS (C-F) retinas stained with toluidine blue. Top panel corner depicts a fundus image of the patient’s left eye, showing hyperpigmentation (white arrowheads) and peripheral retinoschisis (white *) (A). (B) Morphology of perimacular region of the control eye (C–F). The retina of the affected GFS donor displayed different degrees of retinal degeneration. Observation at low magnification of both perimacular region (C) and peripheral tissue (E) demonstrated sparse inner and outer nuclear layers with stunted photoreceptor inner and outer segments. A thin, restricted area of pigmented RPE cells was observed in the perimacular retina (C, arrows) while a continuous layer of pigmented RPE cells was observed in the periphery (E) of the affected donor. High magnification observation of the affected retina in the periphery (F) but not in the perimacular region (D) showed the presence of several clumps of pigment (arrowheads). In addition, tissue from the inferotemporal quadrant was also evaluated (G, H). This region contained a prominent pre-retina (epiretinal) compartment composed of a monolayer of fibroblast-like cells that were separated from the retina by a connective tissue-like matrix that was free of cells (H, G, *). RPE= retinal pigment epithelium; Ph=photoreceptors; ONL= outer nuclear layer; OPL= outer plexiform layer; INL= inner nuclear layer; IPL= inner plexiform layer; GCL= ganglion cell layer. Scale bars C, E, G=40μm; B, D, F, H= 20μm.
retina (Figure 4C); the abnormal distribution was also observed in rosettes within the perimacular region (Figure 4D). On the other hand, red/green opsins were mostly absent in the periphery of the affected retina (Figure 4B).

Both a matched control and affected GFS donor eyes were labeled with antibodies specific to blue cone opsins (Figure 5). The control retina displayed the blue cone opsin restricted to its outer segments (Figure 5A). However, a significant increase in blue cone opsin was observed in all regions of the cone structure in the GFS affected eye (Figure 5, B–D) where the blue cone opsin was distributed along the entire plasma membrane of this cone type; the abnormal distribution was also observed in rosettes in the perimacular region (Figure 5D).

DISCUSSION

Histopathological analysis of the GFS affected retina showed the presence of different degrees of photoreceptor cell degeneration in both the peripheral and perimacular regions. In this affected donor, RPE degeneration was also observed and documented.

Differentiation of the vetebrate retina is guided by complex interactions between intrinsic genetic programs and extrinsic regulatory factors, entailing
precise coordination between withdrawal from the cell cycle and differentiation. Acquisition of functional specificity depends on precise spatially and temporally gene expression patterns that are in turn dictated by complex transcriptional regulatory networks. In the mammalian retina rod and cone photoreceptors are generated from common pool(s) of neuroepithelial progenitors. Cone-rod homeobox (CRX), neural retina leucine zipper (NRL) and rod-specific orphan nuclear receptor (NR2E3) are key transcriptional regulators that control photoreceptor differentiation.

Enhanced S cone syndrome (ESCS) patients, as well as patients with Goldman-Favre syndrome and some patients with clumped pigmented retinal degeneration, carry mutations in the NR2E3 gene. Specifically, loss-of-function mutations in this gene cause a disorder of human retinal photoreceptor development characterized by hyperfunction and excess of the normally minority S (short wavelength or blue) cone photoreceptor type together with near absence of function of the majority of rod receptors. Moreover, multiple mutations in the mouse Nr2e3 gene were identified in the rd7 mouse model. The rd7 mice exhibit a progressive rod degeneration accompanied by 1.5-2 fold increase in the number of S-cones.

The human retina is composed of roughly 90% red/green and 10% blue cones. However, the data obtained in the analysis of the GFS affected retina revealed a significant increase in blue cone opsins both in the periphery and perimacular region. A high proportion of rods over cones (over 95%) also characterize the normal human retina. The GFS affected retina was characterized by an almost complete absence of rods. The photoreceptor phenotypes described above are in agreement with the previously described Nr2e3 mutations in humans and rodents, which led to excess of the minority of the S (short-wavelength or blue) cone photoreceptor type together with near absence of rod function.

In the present case, a striking cone abnormality was the presence of both red/green and blue opsins throughout the entire cone cell body instead of the usual restriction to the outer segment. A previous
study of enhanced S-cone syndrome donor eyes reported the presence of abnormal distribution of both S- (blue) and L/M- (red/green) cone opsins along the entire plasma membranes of the cells, including their inner segments, cell bodies, axon and pedicles. More recently, an affected member of a clinically well characterized family with an autosomal dominant form of cone dystrophy was also shown to exhibit distribution of the red/green cone opsin from the tip of the outer segment to the pedicle. Moreover, a recent retinitis pigmentosa GTPase regulator (RPGR)-deficient murine model was also shown to have initial ectopic or unrestricted distribution of both red/green and blue opsins and a reduced level of rhodopsin followed by the subsequent degeneration of cones and rods. That report suggested that mislocalization of cone opsins may precede cone cell death. Finally, a recent report described red/green opsin distribution throughout the cell membrane of the heterozygous P23H-3 rhodopsin rat transgenic retinas from postnatal day 16 to 500.

Another unique phenotype of the GFS affected retina was the presence of rosettes of both red/green and blue cone opsin in the perimacular region. The rd7 mouse model is characterized histologically by retinal dysplasia manifesting as folds and whorls labeled with blue cone opsin antibody in the photoreceptor layer. The authors that described the retinal dysplasia speculated that Nr2e3 might function by regulating genes involved in cone cell proliferation. Further studies will be necessary to unravel the function of Nr2e3 in the generation of retinal folds or rosettes.

The processing of visual information from the environment begins at the output of the photoreceptor synapse with neurons in the inner layers of the retina. No cone pedicles were observed in the GFS affected retina when labeled with the cone arrestin antibody, in contrast to what was observed in control retinas. Therefore, it is possible that the GFS affected retina could not effectively process visual information.

In the GFS affected retina, the RPE cells were significantly different from control matched RPE cells. A thin, restricted area of pigmented RPE cells was observed in the perimacular retina while a continuous layer of pigmented RPE cells was observed in the periphery; these pigmentary changes are likely associated with the clinical clumped pigmentary retinal findings frequently reported in Goldmann-Favre patients. The ultrastructural observation of the perimacular area revealed a collapsed RPE apical surface mostly deprived of apical microvilli and basal infoldings. Moreover, Bruch’s membrane was extensively disorganized. Some areas displayed multilayers of pigmented cells where the presence of desmosomes was noticed between adjacent cells. The cytoplasm of RPE cells was filled with abnormally large (>1mm) spherical electron-dense melanosomes. Further analysis of these melanosomes is needed for a better understanding of their role in the pathologic changes observed. A previous histopathologic analysis of a full-thickness eye-wall biopsy obtained from the eye of a young patient with Goldmann-Favre syndrome, from a 4 mm peripheral area, displayed diffuse degenerative changes involving predominantly the sensory retinal layers with a relatively normal pigment epithelium and choroid.

In conclusion, we report here the clinical findings and abnormal distribution of the red/green and blue cone opsins throughout the entire cone cell bodies together with absence of rhodopsin in the retina from a donor diagnosed with GFS. The red/green and blue
cones were also observed in rosettes uniquely present in the perimacular area. These results are important to our understanding of one of possibly several molecular mechanisms underlying this disease. It also suggests that vision loss in this patient may result not only from abnormal Nr2e3 but also from secondary neuronal death and corrupted retinal circuitry due to the irreversible effects of retinal remodeling.

ACKNOWLEDGMENTS

This work was presented at the Association for Research in Vision and Ophthalmology Annual Meeting, May, 2008 and at the XIIth International Symposium on Retinal Degeneration Meeting, September, 2008 and at XVIII ICER08.

The authors thank Dr. Peter MacLeish (Morehouse School of Medicine, Atlanta, GA) for providing us with the antibody to cone arrestin (7G6), Dr. Paul Hargrave (University of Florida, Gainesville, FL) for providing us with the antibody to rhodopsin (B6-30N). This work was supported by The Foundation Fighting Blindness, Owings Mills, MD, NIH infrastructure grant EY015638 and an unrestricted grant from Research to Prevent Blindness. The authors thank Dr. Peter MacLeish (Morehouse School of Medicine, Atlanta, GA) for providing us with the antibody to cone arrestin (7G6), Dr. Paul Hargrave (University of Florida, Gainesville, FL) for providing us with the antibody to rhodopsin (B6-30N). This work was supported by The Foundation Fighting Blindness, Owings Mills, MD, NIH infrastructure grant EY015638 and an unrestricted grant from Research to Prevent Blindness.

Declaration of interest: The authors report no conflict of interest.

REFERENCES

Choroideremia: Analysis of the Retina from a Female Symptomatic Carrier

Vera L. Bonilha
The Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA

Karmen M. Trzupek
Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA

Yong Li
The Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA

Peter J. Francis
Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA

Joe G. Hollyfield and Mary E. Rayborn
The Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA

Nizar Smaoui
NEI DNA Diagnostic Laboratory, National Institutes of Health, Bethesda, Maryland, USA

Richard G. Weleber
Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA

Purpose: To define the retinal pathology in a 91 year-old affected matriarch of a three-generation choroideremia family with multiple manifesting carriers. Methods: Tissue from three different retinal areas was processed for immunohistochemistry. The macular area was processed for transmission electron microscopy. Cryosections were studied by indirect immunofluorescence, using well-characterized antibodies to cone cytoplasm, rhodopsin and cone opsins. The affected donor eyes were compared to a postmortem matched normal eye. Results: The retina displayed areas of severe degeneration, with no photoreceptor outer segments, photoreceptor nuclear atrophy, and atrophy of the inner retina. Other retinal areas were near to normal. The RPE was severely degenerated, with thinning, pigment clumping and sub-epithelial debris deposition in all the areas examined. The choroid displayed depigmentation. Labeling with cone opsin antibodies revealed that cones were drastically affected: blue opsin was almost completely absent, while red/green opsins were distributed along the entire plasma membrane of the cell. Rhodopsin was also distributed along the entire rod plasma membrane. Ultrastructural analysis of the affected macula revealed the absence of RPE apical microvilli and basal infoldings. Instead, RPE’s basal surface and choroid displayed the presence of banded fibers composed of clumps of wide-spacing collagen. Bruch’s membrane was filled with vesicular structures, some smooth and others with bristle-like projections. Conclusions: The histological data suggests that the clinical manifestation in this donor is related to degenerative changes in the retina, RPE, and choroid.

Keywords choroideremia; carrier state; immunohistochemistry; cone opsins; rhodopsin

INTRODUCTION

Choroideremia is a rare (1:50,000 males) X-linked recessive degeneration characterized by progressive atrophy of the photoreceptors, RPE, and choroid in affected males. Vision loss in males is similar to that observed in X-linked retinitis pigmentosa,
with night blindness, severe peripheral vision loss, and central visual acuity loss late in the course of the disease.

Female carriers of choroideremia often demonstrate characteristic fundus changes including patchy depigmentation of the RPE and coarse pigmented granularity in the periphery. However, most carriers retain good visual function throughout life, with either no symptoms or mild to moderate night blindness. Significant visual impairment in female carriers of choroideremia is uncommon, and typically attributed to skewed X-inactivation leading to a high percentage of cells expressing the mutant X chromosome, although subretinal neovascularization or fibrosis has been reported in at least 2 cases. Full-field ERG recordings in carrier females are typically normal or very mildly reduced; multifocal ERGs may be more sensitive given the patchy nature of cellular loss in the carrier state.

Pathologically, male patients with choroideremia show complete loss of the choroid and outer retina, displaying a thin line of atrophic inner retina lying against the sclera. The complete atrophy of the retina and choroid in male patients precludes identification of the primary defect in these structures. However, the milder changes in female patients present an opportunity for understanding of the mechanisms involved in this pathological process.

Choroideremia is caused by mutations in the CHM gene, which encodes component A of Rab geranylgeranyltransferase, referred to as Rab escort protein (REP-1). However, it is still unclear how mutations in this protein lead to the degeneration of the choroid, RPE and retina. In the present study we analyzed the retina, RPE and choroid morphology and the distribution of photoreceptor markers in a donor eye from a female symptomatic carrier of X linked choroideremia.

MATERIALS AND METHODS

Patient Information

The clinical evaluation of the affected members was carried out at the Casey Eye Institute at Oregon Health & Science University in Portland, Oregon with the approval of the OHSU Institutional Review Board (IRB). The donor requested eye donation prior to her death; organ donation was coordinated through National Retinitis Pigmentosa Foundation Donor Program (donation number #788).

The patient and several other affected members in the family were clinically evaluated.

Molecular Genetics

Genomic DNA was prepared from peripheral blood lymphocytes using a commercially available kit Gentra DNA kit (Puregene; Gentra Systems, Minneapolis, MN). All fifteen exons of the CHM gene and their respective splice site junctions were PCR amplified and sequenced by bi-directional fluorescence sequencing using BigDye Terminator cycle sequencing version 3.1 and the model ABI 3130 sequencer according to the manufacturer’s recommendations (Applied Biosystems, Foster City, CA). Primers sequences and PCR conditions are shown in Table 1.

Histopathology

The immunocytochemistry analysis was performed in the Cleveland Clinic Foundation and is exempt of IRB approval. The donor globes were fixed 8 hrs post-mortem in a mixture of 4% paraformaldehyde and 0.5% glutaraldehyde made in 0.1 M phosphate buffer, pH 7.3. After 1 month in fixative, the globes were transferred and stored in 2% paraformaldehyde prepared in the same buffer. The eyes from a 68-year-old female and a 91-year-old male were used as controls, and were fixed 14.5 hr and 7.5 hr post-mortem in 2% paraformaldehyde made in the same buffer. Tissue from three different retinal areas were cut, dehydrated through a series of ethanol solutions and embedded in paraffin using an automated tissue processor (Leica Microsystems TP1020, Benneck Burn, IL). 7–8 µm sections were cut on a Leica RM2125 microtome (Leica Microsystems) and sections were collected on Superfrost/Plus Slides (Fisher Scientific, Pittsburgh, PA, USA).

Sections were stretched on the slides on water and adhered to the slides by room temperature incubation overnight followed by 2 hrs incubation in a HI1210 slide warmer at 60°C (Fisher Scientific). Prior to labeling, paraffin was removed through two consecutive xylene incubations for 10 min. The tissue was then gradually rehydrated by sequential incubation of ethanol 100, 90, 70, 50, and 30% for 5 min. each and processed for immunofluorescence labeling as previously described. Briefly, tissues were blocked in PBS supplemented with 1% BSA (PBS/BSA) for 30 min and incubated with the antibodies in PBS/BSA overnight at 4°C. Cryosections of both the matched control and affected donor tissues were labeled with the following antibodies: rabbit polyclonal antibody AB5407 to blue cone opsins (1: 1200, Chemicon International, Inc., Temecula, CA, USA), rabbit polyclonal antibody AB5405 to red/green cone opsins (1: 1200, Chemicon International, Inc., Temecula, CA), monoclonal antibody B6-30N to rhodopsin (1:50, from Dr. P. Hargrave, University of Florida, Gainesville, FL, USA.), and the monoclonal antibody 7G6 to cone photopigments (1:100, from Dr. P. MacLeish, Morehouse School of Medicine, Atlanta, GA, USA).

Cell nuclei were labeled with TO-PRO-3 iodide (1µg/ml, Molecular Probes, Eugene, OR, USA). Secondary antibodies (goat anti-mouse or anti-rabbit IgG; 1:1000) were labeled with Alexa Fluor 488 (green; Molecular Probes). Sections were analyzed using a Leica laser scanning confocal microscope (TCS-SP2, Leica, Exton, PA, USA). A series of 1 µm xy (en face) sections were collected. Each individual xy image of the retinas stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). Microscopic panels were composed using AdobePhotoshop 5.5 (Adobe, San Jose, CA, USA).

TABLE 1

<table>
<thead>
<tr>
<th>Exon</th>
<th>Primer</th>
<th>Sequence: 5’ > 3’</th>
<th>Amplicon size</th>
<th>Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EX1FW</td>
<td>GACCTTCCACCCAAGAACTAC</td>
<td>218</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX1RV</td>
<td>ACAGTCTTCTCTTAACTTTTGTCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EX2FW</td>
<td>AGGATGGGTCTCTTGGTGTTT</td>
<td>497</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX2RV</td>
<td>GGGGCAGGCATGAGGTTTCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EX3FW</td>
<td>CTTTACGCTACCTCCACCTTA</td>
<td>468</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX3RV</td>
<td>CGCACCAGGCTCTCTTATAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>EX4FW</td>
<td>TTGCGATTTGTCACTGCCCAC</td>
<td>222</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX4RV</td>
<td>AGTCATATTAGTTTACCTGAGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EX5FW</td>
<td>CACCTGTCTCTTAACTTTTAT</td>
<td>1096</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>EX5RV</td>
<td>TACCTCTCTCTTAACTTTTATAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>EX6FW</td>
<td>CCAATTTTTCATTTTCAACAA</td>
<td>214</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX6RV</td>
<td>ACATTAATTTTAGCTGATAGCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>EX7FW</td>
<td>GCCTGGCTAGAGTGGAAACGAT</td>
<td>473</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX7RV</td>
<td>ATGGGAGCCCTGAATACTAGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EX8FW</td>
<td>AGTTGATTGATTTGAGTGTAAGTG</td>
<td>309</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX8RV</td>
<td>CACCTTTAGAAGGGACAAAGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>EX9FW</td>
<td>TTTCTGGGGGATAATTGGCTCTG</td>
<td>387</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>EX9RV</td>
<td>TAATATGAGGTTCATTTATATC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>EX10FW</td>
<td>AACCTCTCTCTCTTCAACAAAGA</td>
<td>567</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX10RV</td>
<td>TACCTCTCTCTCTTCAACAAAGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>EX11FW</td>
<td>CGAACAATCTCATCTGAATATC</td>
<td>204</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX11RV</td>
<td>GTGTAGTTGATTTGACACCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EX12FW</td>
<td>ATGCTCTCTATCTGATATCTCACA</td>
<td>580</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX12RV</td>
<td>ATCTCTCTATTACCAACCTTACAACACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>EX13FW</td>
<td>GCTCAGCTCTCTTATTATCCAT</td>
<td>254</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX13RV</td>
<td>GAAGTTATAGTTGTTACAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>EX14FW</td>
<td>TAGGCTACACAGTGATAGTAA</td>
<td>317</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX14RV</td>
<td>GCACTTCTTCTTCCAGAGG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>EX15FW</td>
<td>TAGAACCTTGAATAACGACTGATG</td>
<td>588</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>EX15RV</td>
<td>CACCTTTGGATTTTCTATTACCTATT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ultrastructural Analysis

A small area of the retina/RPE/choroid tissue from the macula of the affected choroideremia donor and matched-controls (88- and 91-year-old males with 7.5 and 12 hr post-mortem) were fixed in 2.5% glutaraldehyde in 0.1M cacodylate buffer, sequentially dehydrated in ethanol and embedded in Epon as previously reported (Bonilha et al., *J. Cell Biol.* 1999). Thin sections were prepared and electron micrographs were taken on a Tecnai 20 200 kV digital electron microscope (Philips, Hillsboro, OR, USA) using a Gatan image filter and digital camera at 3600 diameters and are printed at identical magnifications.

RESULTS

Clinical Findings

Figure 1 shows the pedigree of the family affected with an X-linked choroideremia. The donor (III-4 of Figure 1) first presented to the Ophthalmic Genetics Clinic at the Casey Eye Institute at the age of 77 with a visual acuity of 20/25 OD, 20/30 OS, and no subjective limitation of night vision or peripheral vision. Fundus examination disclosed a striking reticular pigmentary dispersion with fine clumping, but no frank bone spicule pigmentation, in the mid and far periphery of each eye. A large pigmented retinal scar was observed temporal to the right macula OD. Full field electroretinography was normal. Over the ensuing 14 years, her night vision and central vision gradually decreased; by 91, her family reports that she was significantly visually impaired from loss of central vision.

The donor’s family history is unique in that several of the female members appear to be affected to an equal, if not greater degree than the men. The donor’s daughter (IV-2 of Figure 1) was initially diagnosed with retinitis pigmentosa in her early 20’s. When she presented to ophthalmic genetics at the age of 41, she suffered from reduced night vision and blurred central vision (20/40-2, 20/25-2). Full-field ERG responses were mildly subnormal. By the age of 54, acuity worsened to 20/300, 20/60+1,
FIG. 1. Pedigree of a family with an X-linked choroideremia showing the symptomatic carrier member (III-4) on whom the postmortem analysis was performed. *Molecularly confirmed to carry 1413+1G>A in CHM; II-2: By report, totally blind by early 50’s; III-2: By report, legally blind in adulthood; III-4: Propositus. Night blindness and central vision loss late in life (>75yo); IV-2: Night blindness and significant central vision loss in 50s. Abnormal rod and cone responses on ERG; V-1: Salt and pepper retinopathy; asymptomatic at 34 years old; V-2: Mottling of inferior RPE; asymptomatic at 33 years old.

The symbol * indicates patients examined personally; hatched symbols, patients who are affected by history but not personally examined; arrow, proband; single oblique line, deceased.

and she was unable to drive. ERG responses decreased to approximately one-third of those in the earlier study.

Her son and daughter (V-1 and V-2 of Figure 1), who both carry the familial CHM mutation, remain asymptomatic at the age of 35 and 34 years, respectively. The donor, her daughter, and her granddaughter and grandson were molecularly confirmed to carry a splice site mutation on the 5’ splice site (donor site) of intron 11 in the CHM gene c1413+1G>.

This mutation is expected either to cause the retention of intron 11 or skipping of exon 11 which in either case will produce an unstable mRNA leading to a nonsense-mediated mRNA decay (NMD) and the absence of the REP-1.

Morphological Pathology

Semi-thin sections of epon-embedded tissue were analyzed and compared to matched controls (Figure 2A, B). In female patients, the severity of disease expression is related to the proportion of cells expressing the mutant X chromosome. As a consequence, we focused our observations in three different regions in the periphery of the donor. The schematic drawing in the upper corner of this figure depicts the regions harvested and processed for observation in both the morphological and immunohistological assays (periphery regions 1, 2, and 3 and macular region 4). The retina of the affected donor displayed different degrees of photoreceptor degeneration in each of the regions observed when compared to the morphology of the control retina in the periphery (Figure 2A) and macular (Figure 2B) region of the eye. Extensive degeneration could be observed in all retinal layers in all analyzed regions (Figures 2C1, D2, E3).

Some pigmented cells are seen invading the degenerating retina (Figure 2C1, arrowheads). The RPE of the affected donor displayed typical thinning, pigment clumping and basal laminar deposits (Figures 2F1, G2, H3) when compared to the matched control (Figure 2A and B). Extensive accumulation of amorphous material underneath the RPE layer was observed (Figure 2G2,* while in another area the presence of inflammatory cells (Figure 2H3, small arrows) was observed in the choroid. In the macula, the RPE was thinned with pigment clumping, soft and hard drusen deposits (Figure 2I4, J4, K4, large arrows), widespread photoreceptor degeneration, and giant lipophlic drops in the choroid when compared to the matched control (Figure 2B).

Histological Pathology

To further understand some of the molecular changes associated with this X-linked choroideremia phenotype in this family, tissue from the same regions described above (regions 1–3 in Figure 2) were also processed for paraffin embedding and
FIG. 2. Degeneration in the retina of a female symptomatic carrier of choroideremia. Human 1 μm plastic sections of both a matched control and an affected choroideremia stained with toluidine blue. Top panel corner depicts a fundus image of the studied eye with a schematic drawing of the regions cut and processed for cryosectioning (A). Morphology of control retina in the perimacular region (B). (C1, D2, E3) The retina of the affected donor displayed different degrees of photoreceptor degeneration in each of the regions observed. In C1 some pigmented cells are seen invading the degenerating retina (arrowheads). (F1, G2, H3) RPE of the affected donor displayed typical thinning, pigment clumping, basal laminar deposits. In G2 extensive accumulation of amorphous material underneath the RPE layer is observed (*) while in H3 the presence of inflammatory cells (small arrows) is observed in the choroid. (I4, J4, K4) Different areas of the affected donor displaying deposition of drusen under the RPE (large arrows), RPE thinning and pigment clumping, photoreceptor degeneration and the presence of giant lipophilic drops in the choroid (**). RPE = retinal pigment epithelium; Ph = photoreceptors; ONL = outer nuclear layer; OPL = outer plexiform layer; INL = inner nuclear layer; IPL = inner plexiform layer; GCL = ganglion cell layer. Bar = 200 μm.
immunofluorescence. Initially, the distribution of the cone cytoplasmic marker 7G6 was analyzed in both the symptomatic carrier and a matched-control eye (Figure 3A–D). No significant differences were observed between the control sample (Figure 3A) and all the three other areas observed in the affected donor (Figure 3B–D) with cones displaying normal morphologic characteristics of cone photoreceptors. Moreover, cell nuclei, labeled with TO-PRO-3, did not display any significant difference to the matched control.

However, a striking abnormal distribution of the red/green opsins throughout the entire cone cell body was observed in all the affected donor regions (4B–D) when compared to the matched control eye (Figure 4A). This abnormal distribution was observed from the outer segments to the cone pedicles in the inner nuclear region of the retina of the affected donor.

In contrast, the blue cone opsin of the affected donor eye (Figure 5 B–D) was almost completely abolished when compared to the matched-control eye (Figure 5A). However, region 2 displayed a few cones that still expressed blue opsin distributed throughout the inner and outer segments of this cone type (Figure 5B, arrow).
FIG. 4. Red/Green cone opsins are distributed along the entire plasma membrane of this cone type in a female symptomatic carrier of choroideremia. Human paraffin sections of both a matched control (A) and affected choroideremia donor (B, C, D) were labeled with antibodies specific to red/green cone opsins (green) while cell nuclei were labeled with TO-PRO-3 (blue). Sections were analyzed using a Leica laser scanning confocal. Comparison of the samples showed that red/green cone opsins are distributed along the entire plasma membrane of this cone type, from the tip of the outer segment to the synaptic base in all the observed regions of the affected eye. Bar = 40 µm.

The rod outer segments were visualized through labeling with rhodopsin antibodies. Similar to the red/green opsin, a striking unrestricted distribution of rhodopsin was observed throughout the entire rod cell body of the affected eye (Figure 6B–D) when compared to the control-matched eye (Figure 6A).

Ultrastructural Pathology

The ultrastructure of RPE and Bruch’s membrane in the macular area was analyzed by TEM. Observation at low magnification showed photoreceptor outer segments (POS) lying on top of a collapsed RPE apical surface. No RPE microvilli are visible on the RPE apical surface. Moreover, the RPE cytoplasm is filled with small vacuoles and pigments (P) (Figure 7A). Examination of the RPE’s basal surface revealed complete absence of basal infoldings and the presence of banded fibers composed of clumps of banded material with 1000Å periodicity consistent with long spaced collagen (Figure 7B–D, arrows, B, C, D). The choroid, Bruch’s membrane, and the space between
the RPE basal membrane was filled with vesicular structures, some smooth and others like bristle-coated vesicles (Figure 7B and C). Higher magnification of this area is shown in Figure 7C. Beneath the RPE, the banded fibers composed of clumps of wide-spacing collagen are continuous with a drusen characterized by the presence of residual bodies, vesicular material and filaments (Figure 7D). The basement membrane is not visible in this area.

DISCUSSION

This study demonstrated substantial redistribution in the photoreceptor proteins, specifically red/green cone opsin and rhodopsin, as compared to normal control tissues. These changes included loss of opsin restriction to the cone and rod outer segment resulting in its distribution throughout the entire cell body. Moreover, the blue cone opsin was significantly decreased in the affected retina. With the exception of one of the three

FIG. 5. Blue cone opsins are significantly decreased in this cone type in a female symptomatic carrier of choroideremia. Human paraffin sections of both a matched control (A) and affected choroideremia donor (B, C, D) were labeled with antibodies specific to blue cone opsins (green) while cell nuclei were labeled with TO-PRO-3 (blue). Sections were analyzed using a Leica laser scanning confocal microscope. Comparison of the samples showed that blue cone opsins are significantly decreased in all the observed regions of the affected eye. Region 2 displays a few cones that still express blue opsin but it is distributed throughout the inner and outer segments of the cones (arrow). Bar = 40 µm.
FIG. 6. Rhodopsin is distributed along the entire plasma membrane of the rods in a female symptomatic carrier of choroideremia. Human paraffin sections of both a matched control (A) and affected choroideremia donor (B, C, D) were labeled with antibodies specific to rhodopsin (green) while cell nuclei were labeled with TO-PRO-3 (blue). Sections were analyzed using a Leica laser scanning confocal microscope. Comparison of the samples showed that rhodopsin is distributed along the entire plasma membrane of rods, from the tip of the outer segment to the synaptic base in all the observed regions of the affected eye. Bar = 40 µm.

Observed areas, no blue opsin was detected in the affected retina. Rhodopsin was also found to be distributed along the entire cell body.

Opsins are the protein component of the photopigments, which absorb photons of light. This reaction leads to a change in molecular shape and the subsequent release of energy, the first step in the visual transduction cascade. Two families of opsins are generally recognized due to different spatial expression and evolutionary histories. Rhodopsin, which is used in night vision, is a high-sensitivity, low-acuity opsin found in the rod photoreceptor cells.

Cone opsins, employed in color vision, are low-sensitivity, high-acuity opsins located in the cone photoreceptor cells. Cone opsins are further subdivided according to their absorption maxima (λ_{max}), the wavelength at which the highest light absorption is observed. Evolutionary relationships, deduced using the amino acid sequence of the opsins, are also frequently used to categorize cone opsins into their respective group. Both
FIG. 7. Ultrastructural evidence of RPE degeneration in a female symptomatic carrier of choroideremia. The ultrastructure of RPE and Bruch’s membrane was analyzed by TEM. Observation at low magnification showed photoreceptor outer segments (POS) lying on top of a collapsed RPE apical surface while a control-matched eye displayed several apical microvilli supporting the POS (A). The matched control displayed extensive basal infoldings (BI) in their basal surface on top of a well-structured aged Bruch’s membrane (BM). The choroideremia donor cytoplasm was filled with small vacuoles and pigments (P) (C). Observation of RPE’s basal surface in the choroideremia donor revealed absence of basal infoldings and the presence of banded fibers composed of clumps of wide-spacing collagen (arrows, D, E, F). The choroid (Ch), Bruch’s membrane (BM) and the space between the RPE basal membrane was filled with vesicular structures, some smooth and others like bristle-coated vesicles (D, E). Higher magnification of this area is shown in E. Another area of the choroideremia donor eye displayed drusen (Dr) and beneath it Bruch’s membrane contained residual bodies, vesicular material and filaments (F). Bars: C, D, F = 2 \mu m and A, B, E = 1 \mu m.
The blue cone opsin reactivity was significantly diminished in the affected donor. To our knowledge this is the first report of such pathology in the retina of a choroideremia patient. One of the possible explanations for this observation is that the antigenic epitopes might be masked in this donor since there was no alteration of the labeling with the cone cytoplasmic marker. Another possibility is loss of blue cones in this donor. This case was also characterized by the striking abnormal distribution of rhodopsin throughout the entire rod cell body. A previous study carried out in a female carrier of choroideremia also detected patchy ectopic distribution of rhodopsin.

It has been shown that choroideremia is caused by mutations in the REP-1 gene that encodes component A of Rab geranylgeranyl-transferase or REP-1, a protein involved in intracellular vesicular transport. However, little is known about how mutations cause disease and degeneration of the choroid, RPE and retina. Rab geranylgeranyl-transferase A–B holoenzyme attaches (3)H-geranylgeranyl groups to Rab GT-Pases, a reaction which regulates Rab intracellular trafficking since the mutation in Rep1 prevents the modification of Rab proteins, thereby disrupting Rab-mediated intracellular trafficking.

Recently, REP-1 was localized to rod inner segments, cell bodies and synapses suggesting that rods are the primary site of degeneration in this disease. Our observations of cone degeneration suggest an important role of cones in the choroideremia pathology. Also recently, the retinal pathology of zebrafish rep1 mutants carrying a nonsense mutation in the homologous REP1 gene was described. However, the author did not see any abnormal distribution of rhodopsin, red/green and blue opsins in the photoreceptor cells of the mutant zebrafish.

The ultrastructural observation of the affected macula revealed absence of RPE apical microvilli and basal infoldings. Moreover, the RPE’s donor basal surface was dominated by the presence of banded fibers composed of clumps of wide-spacing collagen. Bruch’s membrane was filled with vesicular structures, some smooth and others like bristle-coated vesicles. Similar findings were previously reported when the functions of the RPE begin to fail in the senile maculopathies. The reported RPE ultrastructure is consistent with RPE cells that are not able to carry out several of their nurturing functions.

In conclusion, we report here the clinical findings and abnormal distribution of the red/green cone opsins and rhodopsin throughout the entire cone and rod cell bodies from a member of a family with an X-linked recessive retinal degeneration. The blue cones were also affected since they exhibited very low reactivity to the blue cone opsin antibody. These results are important to our understanding of one of likely several molecular mechanisms underlying choroideremia in the context of high clinical variability. It also suggests that vision loss in choroideremia may result not only from abnormal REP-1 but also from secondary neuronal death and corrupted retinal circuitry due to the irreversible effects of retinal remodeling.
ACKNOWLEDGMENT

The authors thank Dr. Peter MacLeish (Morehouse School of Medicine, Atlanta, GA, USA) for providing us with the antibody to cone cytoplasmic marker (7G6), Dr. Paul Hargrave (University of Florida, Gainesville, FL, USA) for providing us with the antibody to rhodopsin (B6-30N). This work was supported by The Foundation Fighting Blindness, Owings Mills, MD, USA (Trzupek, Francis, Hollyfield, Weleber), NIH infrastructure grant EY015638 (Hollyfield), and a Career Development Award (Francis) and an unrestricted grant (Weleber, Hollyfield) from Research to Prevent Blindness. This work was presented at the Association for Research in Vision and Ophthamology Annual Meeting, May 2007.

REFERENCES

Age and disease-related structural changes in the retinal pigment epithelium

Vera L Bonilha
Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA

Abstract: As the retinal pigment epithelium (RPE) ages, a number of structural changes occur, including loss of melanin granules, increase in the density of residual bodies, accumulation of lipofuscin, accumulation of basal deposits on or within Bruch’s membrane, formation of drusen (between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane), thickening of Bruch’s membrane, microvilli atrophy and disorganization of the basal infoldings. Although these changes are well known, the basic mechanisms involved in them are frequently poorly understood. These age-related changes progress slowly and vary in severity in different individuals. These changes are also found in age-related macular degeneration (AMD), a late onset disease that severely impacts the RPE, but they are much more pronounced than during normal aging. However, the changes in AMD lead to severe loss of vision. Given the many supporting functions which the RPE serves for the retina, it is important to decipher the age-related changes in this epithelium in order to understand age-related changes in vision.

Keywords: retinal pigment epithelium, aging, age-related macular degeneration (AMD), ocular disorders, retinal disease

Age-related changes in the RPE

The retinal pigment epithelium (RPE) performs highly specialized metabolic and transport functions essential for homeostasis of the neural retina (Bok 1993). These include phagocytosis of photoreceptor-shed outer segments, transport of nutrients into and removal of waste products from photoreceptor cells and retinoid transport and regeneration. The RPE is a low cuboidal epithelium containing very long thin and sheet-like microvilli on its apical surface that project into the interphotoreceptor matrix where they interact with the tips of the rod and cone photoreceptor outer segments (Bok 1993). The apical surface of RPE cells supports and carries out the diurnal phagocytic removal of spent photoreceptor tips. One RPE cell supports 30–50 photoreceptors, which shed daily ~5% of their outer segment mass (Zinn and Benjamin-Henkind 1979). The basal surface of RPE cells displays highly convoluted basal infoldings that attach to a specialized Bruch’s basement membrane, an acellular layer separating the RPE from the choriocapillaris. The RPE’s basal surface participates in extensive metabolic exchanges with the blood vessels in the underlying choriocapillaris.

An accumulation of discrete but pronounced structural changes occurs in aging eyes. In the aged retina, an overall thinning is apparent, due to loss of neurons from all the neuronal cells and also shortening of photoreceptor cells. The RPE specifically is known to undergo several structural changes, including loss of melanin granules, increase in the number of residual bodies, accumulation of the age pigment lipofuscin, accumulation of basal deposits on or within Bruch’s membrane (BM), formation of drusen (between the basal lamina of the RPE and the inner collagenous layer of BM), thickening of BM, RPE microvilli atrophy and disorganization of basal infoldings (Boulton and Dayhaw-Barker 2001). Some of these changes are shown in Figure 1.
Bonilha (B, D, F, H, J) and they will be discussed in detail in the following text. The RPE aging changes progress slowly and are of varying severity in different eyes.

The RPE contains two kinds of pigment, namely lipofuscin and melanin. Melanin is an insoluble high molecular weight polymer derived from the enzymatic oxidation of tyrosine and dihydroxyphenylalanine, linked to proteins and contained in membrane-limited granules in the RPE melanosomes. Recently a comprehensive determination of the protein composition of melanosomes isolated from human melanoma cells was reported using proteomics (Chi et al 2006). The identified proteins included 16 homologs to mouse coat color genes, many associated with human pigmentary diseases, pigment epithelium-derived factor (PEDF) and SLC24A5 (sodium/potassium/calcium exchanger 5, NCKX5). However, these melanosomes may be different

Figure 1 Age-related changes in human RPE. Observation of the structural differences in RPE from young (23 year-old, A, C, E, G, I) and aged (75 and 88 year-old, B, D, F, H, J) human donors. Aged RPE from human donors displays loss of melanin granules (MP, arrowheads in A, E) and accumulation of the age pigment lipofuscin (Lip) (B, D), as observed by the presence of increased autofluorescent granules when observed on epifluorescence in the green channel (FITC filter: excitation 495 nm/emission 519 nm) in aged RPE (D) when compared to young RPE (C). Additional observation of the aged RPE displayed formation of drusen (D) (between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane) (F), thickening of Bruch’s membrane and basal infoldings disorganization (J) when processed and analyzed by electron microscopy. In addition, in the aged RPE cells melanin granules are frequently seen in association with lipofuscin (melanolipofuscin, MLF) granules (H). Young RPE displays melanin pigments on their apical surface (A, E, G) while aged RPE contains mostly lipofuscin granules (B, H). Differential interference contrast microscopy images (A, B). Semi-thin epon sections stained with toluidine blue of young (E) and aged RPE (F) examined in bright field.

Abbreviations: BI, basal infoldings; RPEBM, RPE basement membrane; ICL, inner collagenous layer; MEL, middle elastic layer; OCL, outer collagenous layer; EBM, choroidal endothelial cell basement membrane; Bars: (A to D), 10 μm; (E, F), 200 μm; (G, H), 2 μm; (I, J), 1 μm.
from the ones present in the RPE. RPE melanin originates from neural ectoderm, whereas the one in melanocytes originates from neural crest (Feeney 1978). In aged RPE cells melanin granules are frequently seen in association with lysosomes (melanolipofuscinosomes, MLL) and lipofuscin granules (melanolipofuscin, MLF; Figure 1H), which suggests that any protein bound to melanin may be degraded. In addition, melanosomes may undergo photobleaching with aging, which can diminish the antioxidant efficiency of melanin (Sarna et al 2003). Altogether, these observations suggest that changes in melanin granules possibly contribute to some of the senile changes evident in the RPE. A recent manuscript observed the accumulation of MLF in human RPE from different decades of life and assessed their phototoxicity to RPE cultures in vitro. The analysis of the composition of MLF granules suggested that, in contrast to lipofuscin, they do not contain photoreceptor-specific proteins. The authors suggest that MLF may not originate from photoreceptor outer segments phagocytosis but that MLF accumulates as a result of the melanosomal autophagocytosis of RPE cells (Warburton et al 2006).

Accumulation of secondary lysosomes and residual bodies containing lipofuscin, known as dense bodies, has been observed in post-mitotic and intermitotic cells during aging (Schmucker and Sachs 2002; Morales et al 2004; Kubasik-Juraniec et al 2004). The general consensus is that the accumulation of these dense bodies represents lysosomal aging and is a universal index of cellular senescence (Schmucker and Sachs 2002; Terman et al 2007). It has been well established that the RPE has an extremely active lysosomal system capable of degrading thousands of phagocytosed outer segment disks per day (Young 1971; Zinn and Benjamin-Henkind 1979). The aged RPE accumulates indigested residues of this phagocytic process as residual bodies (Feeney-Burns et al 1987).

Lipofuscin pigment has been described as intracellular yellow-brown autofluorescent granules exhibiting sudanophilic, osmiophilic, argyrophilic and periodic acid-Schiff-positive and acid-fast staining characteristics (Feeney 1978). Lipofuscin is a heterogeneous material composed of a mixture of lipids and different fluorescent compounds, the main fluorophore of which has been identified as the pyridinium bis-retinoid, N-retinylethanolamine-N-retinylidene (A2E), a derivative of vitamin A. RPE lipofuscin is unique because it originates mainly from the phagocytosed photoreceptor outer segments as was demonstrated in early studies. For instance, analysis of the chemical composition of RPE cells revealed that it is different from the photoreceptor outer segments (Berman et al 1974). In addition, investigations undertaken on the Royal College of Surgeons (RCS) rats showed that in this strain, which fails to phagocytose shed outer segments, lipofuscin is significantly diminished (Katz et al 1986; Eldred and Lasky 1993). Moreover, the accumulation of autofluorescent debris was observed in a transgenic mouse line expressing a mutated form of cathepsin D that is enzymatically inactive, thereby impairing the processing of phagocytosed photoreceptor outer segments by the RPE cells (Rakoczy et al 2002). A recent study established the presence of extragranular material present in preparations of lipofuscin routinely isolated by sucrose density gradient centrifugation. In this study, the lipofuscin granules were isolated and further purified by digestion of the extragranular material with proteinase K or by wash with SDS detergent. Raw and purified granules were tested for their protein content. The results demonstrated that: debris-free granules contain little or no protein; the protein associated with lipofuscin granules is essentially all extra-granular and appears to be significantly modified by posttranslational modifications (Renganathan et al 2007). Lipofuscin granules first appear in the basal portions of RPE cells of young eyes (1st decade, Figure 1C), whereas in older eyes (9th decade, Figure 1D), lipofuscin granules form into clumps and fill the entire RPE cell cytoplasm (Wing et al 1978). It is suggested that the accumulation of lipofuscin in aged RPE is connected to RPE functional degeneration either by “clogging” of the cytoplasm or by increased oxidative stress in the cell. Support for the first mechanism (clogging of the cytoplasm) comes from a recent study, which implanted glycoxidized microspheres (Glycox-MS) as imitation for lipofuscin into the subretinal space of 10–12 week-old rabbits. Observations were carried out from 1 to 16 weeks after subretinal implantation. Glycox-MS stagnated for a prolonged period in the cytoplasm of RPE cells and eyes implanted with glycox-MS produced drusen-like deposits at a significantly higher frequency (Yasukawa et al 2007). Support for the second mechanism (increased oxidative stress in the RPE cells) comes from observations that lipofuscin is a photoinducible generator of superoxide anion, singlet oxygen and hydrogen peroxide (Boulton et al 1993; Gaillard et al 1995; Rozanowska et al 1995, 1998). Thus, visible-light irradiation (400–1100 nm) of lipofuscin granules results in extra-granular oxidation of lipids and inactivation of lysosomal and antioxidant enzymes (Wassel et al 1999). In addition, it was shown that A2E has phototoxic and detergent properties and is capable of inducing disintegration of membrane-bound organelles in RPE cultures. Finally, lipofuscin can also interfere with the antioxidant properties of...
melanin (Boulton et al 1993; Rozanowska et al 1995; Schutt et al 2001, 2002; Wang et al 2006). The aged RPE displays increased intracellular accumulation of the blue-shifted auto-
fluorescence lipofuscin granules, which coincides with the
depletion of melanin pigments (Feehley-Burns 1984; Han et al 2007). RPE lipofuscin granules exhibit a broad band emission
spectrum with a peak at 600 nm and subsidiary shoulders
located at 470 and 550 nm when excited at 364 nm; a 680
peak appears with increasing age (Boulton et al 1990).

Bruch’s membrane (BM) is a pentalaminar structure
composed of the RPE basement membrane, inner collag-
enuous layer, middle elastic layer, outer collagenous layer, and
the choroidal endothelial cell basement membrane (Hogan
and Alvarado 1967). This acellular extracellular meshwork
found between the RPE and the choroid, which is 2–4
and Alvarado 1967). This acellular extracellular meshwork
found between the RPE and the choroid, which is 2–4
μm thick, is known to undergo increased thickening (Figure 1J),
chemical reconfiguration of both proteins and lipids, and
debris accumulation during aging (Pauleikhoff et al 1990;
Okubo et al 1999; Zarbin 2004). The aged BM displays an
exponential increase in phospholipids, triglycerides, fatty
acids, and free cholesterol content (Sheraidah et al 1993).
Protein reconfiguration in the form of post-translational
modifications has been reported in the BM. Immunore-
activity to some of the advanced glycation end product
(AGE) adducts increases in the aged BM (Farboud et al
1999; Handa et al 1999). Although the precise contribution
of AGEs to the retinal pathology remains to be elucidated,
AGEs are recognized as important initiators of age-related
dysfunction, inasmuch as they are known to cause protein
cross-linking, reduced solubility, enzymatic dysfunction, and
loss of receptor recognition (Baynes 2001). A recent study
combined both Raman microscopy and specific chemical
quantification to assess defined AGE adducts and quantify
AGE-related spectral alterations in aged BM of postmortem
eyes (Glenn et al 2007). The analysis showed that the AGEs
pentosidine, carboxymethyllysine (CML), and carboxyethyl-
lysine (CEL) occurred at significantly higher levels in BM-
Ch with age (Glenn et al 2007). In addition, several recent
studies demonstrated that tissue metalloproteinase inhibitor
3 (TIMP-3), vitronectin, annexins, crystallins, clathrin and
adaptin proteins were crosslinked as evidenced from western
blots that showed the presence of these proteins at several
regions of the gel (Nakata et al 2005; Rayborn et al 2006;
Bando et al 2007).

In addition, BM is under constant cycles of pressure-
induced stress as a result of the choroidal flow oscillating
with the cardiac rhythm. The mechanical properties of BM
are critical determinants of its physiology. Specifically, the
elastic properties of BM will determine its ability to sustain
potentially damaging stress and strain perturbations. Recently
the mechanical properties of isolated human BM were inves-
tigated and related to aging. This study demonstrated that
the elasticity of human BM-Ch complex decreased linearly
with aging after the age of 21 with an approximate reduc-
tion of 1% per year. On the other hand, the recoil capacity
of Bruch’s membrane-choroid was not affected by aging
(Ugarte et al 2006).

Drusen are debris-like deposits that accumulate below
the RPE along BM (Figure 1F). Clinically, they are char-
acterized by the terms “hard” and “soft” according to their
size and their appearance in fluorescein angiography. Hard
 drusen are small, hard, round and have well defined borders
(Marshall et al 1998). Hard drusen occur in 80% of postmor-
tem eyes, and are usually small, they are hyperfluorescent on
fluorescein angiography, a characteristic that may be related
to the fact that they are enriched in phospholipids (Bird and
On the other hand, soft drusen are extensive, diffuse, large
deposits, which have borders not sharply defined, and rarely
occur before the age of 55 (Garner et al 1994; Marshall et al
1998). Soft drusen are hypofluorescent in fluorescein angiog-
raphy and display a high content of neutral fats (Pauleikhoff
et al 1992; Arnold et al 1997), vesicles, membranous debris,
and wide-spaced collagen. Generally, hard drusen do not lead
to loss of vision, but soft drusen are considered contribu-
tors to the pathology of age-related macular degeneration
(AMD). Soft drusen deposition in the macula precedes
visual loss; it defines the early stages of AMD together with
pigmentary changes of the RPE. Deposition of soft drusen
in the macula is considered the precursor lesion that leads
to the development of geographic atrophy (dry AMD) and
choroidal neovascularization (wet AMD), which are the late
forms of AMD. The different types of AMD will be discussed
in detail in the following text.

A recent proteomic study carried out on isolated drusen
from both AMD and normal donors found up to 65% of the
proteins identified common to both donor types. TIMP-3,
clusterin, vitronectin, and serum albumin were the most
common proteins observed in normal donor drusen, whereas
crystallin was detected more frequently in AMD donor
drusen. In addition, protein from both normal and AMD
donors such as vitronectin, TIMP-3, clusterin, complement
C9, lysozyme C, serum amyloid P, and apolipoprotein E
migrated in multiple mass ranges from the top to the bottom
of the gel, suggesting the presence of covalent crosslinks
(Crabb et al 2002).
Recent work from several groups also suggests that local inflammation plays a role in drusen formation in a process analogous to that which occurs in other age-related diseases such as Alzheimer’s disease and atherosclerosis, in which there is an accumulation of extracellular plaques and deposits causing a local chronic inflammatory response which in turn exacerbates the effects of the primary stimuli (Hageman et al 2001; Johnson et al 2001; Anderson et al 2002). This hypothesis is supported by evidence revealing the localization of several proteins involved in the immune system such as immunoglobulins; components of complement cascade (such as C5b-9 complex, complement factor F); MHC class II antigens; cell-associated molecules, including HLA-DR and specific CD antigens (Mullins et al 2000; Hageman et al 2001; Johnson et al 2001; Anderson et al 2002).

Few studies have demonstrated age-related effects on RPE microvilli. A finding common to all of them was the shortening of the RPE microvilli (Katz and Robison 1984; Lai and Rana 1986; Weisse 1995). Previously, we have been able to isolate intact RPE microvilli from mice (Bonilha et al 2004) and characterize its content using proteomics. Several of the identified proteins in the microvilli fraction are antioxidant enzymes and have been shown to undergo specific modulation during aging. These include lactate dehydrogenase, glutathione S-transferase, peroxiredoxin, ceruloplasmin, and superoxide dismutase. Our data are supported by several reports, which identified the presence of antioxidant enzymes in the microvilli of kidney (Davies et al 1993; Muse et al 1994), respiratory tract epithelium (Coursin et al 1992), and intestine (Davis et al 1989), among others. Oxidation is a very important mechanism in aging (Kohen and Nyska 2002; Balazy and Nigam 2003; Van Remmen et al 2003; Kregel and Zhang 2007). RPE apical microvilli shortening is also expected to affect several of the key functions carried out by the apical surface. Examples of these include phagocytosis of shed photoreceptor outer segments through the receptors αvβ5 vitronectin receptor and the Mer tyrosine kinase (MerTK) receptor protein; apical transport involving transporters such as Na,K-ATPase, the glucose transporter (Glut-1), monocarboxylate transporter 1 (MCT1), basigin, the Kir7.1 K+ channel, chloride intracellular channel 6, carbonic anhydrase XIV, among others; and visual cycle function through the involvement of CRALBP, RPE65, IRBP, and CRBP (Rayborn et al 2005). These changes could alter the retinal metabolic equilibrium and accelerate degenerative processes in the aging retina. Our ongoing research aims to identify a protein profile that is uniquely present in aged RPE cells. Our findings will lead to future studies on the functional consequence of these proteins and to a more complete understanding of the pathogenesis of AMD.

Animal models in RPE aging studies
A good animal model should reduplicate biochemical, morphological, and molecular changes shown in humans during aging. Much of our understanding of the biological changes that occur with aging has come from studies using rodents. Similarities in the physiology and cell biology of aging in humans and rodents make rodents a valuable model with which to test therapeutic interventions for aging, and they are small enough to allow for the use of statistically robust sample sizes. There are several rodent models to choose from. The National Institute on Aging (NIA) supports many resources to facilitate the use of animal models for biogerontological research, including aged rodent colonies, the aged rodent tissue bank, and tissue arrays from aged rodents (Nadon 2006). One of the rodent models available for aging studies is the rat F1 F344/BN hybrid. The aged (24–25 month-old) F344/BN rat displays several of the RPE age-related changes described above; specifically, BM thickening, lipofuscin accumulation, accumulation of residual bodies, decrease in RPE density and microvilli atrophy when compared to young (3–4 month-old) rats (Figure 2).

Age-related changes in RPE density
Numerous studies have been undertaken to determine changes in RPE density with age. However, previous studies yielded contradictory results: Some found that RPE density increased with age (Tso and Friedman 1968; Harman et al 1997; Leung et al 2004). Others found that it decreased (Streeten 1969; Gao and Hollyfield 1992; Watzke et al 1993); while yet another study found that it did not change with age at all (Dorey et al 1989). The discrepancies among these studies can be explained by the number of eyes analyzed and by the nature of the analyses which were carried out. Use of cross-sections allows analysis of a restricted number of cells, whereas whole-mount preparations allows analysis of the whole population of cells in the tissue. One study (Gao and Hollyfield 1992) investigated this issue analyzing eyes from donors from the 2nd to the 9th decade. Tissue fragments were obtained and analyzed as whole-mounts from the fovea and the retinal equator. Observations suggested that foveal RPE is denser, with cells smaller and more homogeneous, independent of the age of the donor, as shown in Figure 3A and C. Linear regression of the obtained data yielded a significant negative slope of RPE density in the retinal equator, suggesting a uniform rate of equatorial RPE loss during aging.
Figure 2 Age-related changes in F1 F344BN hybrid rat RPE. Observation of young (3–4 month-old, A) and aged (24–25 month-old, B) F1 F344BN hybrid rats reveals several of the RPE age-related changes previously described. These include: Bruch’s membrane thickening (D), accumulation of residual bodies, and microvilli atrophy (B). In addition, bright-field analysis of aged RPE whole-mounts reveals decrease in RPE density (G) while epifluorescence in the green channel (FITC filter: excitation 495 nm/emission 519 nm) reveals increased lipofuscin accumulation (H) when compared to the young RPE cells (E and F). A–D. Transmission electron microscopy.

Abbreviations: BI, basal infoldings; MV, microvilli; POS, photoreceptor outer segments; RPEBM, RPE basement membrane; ICL, inner collagenous layer; MEL, middle elastic layer; OCL, outer collagenous layer; EBM, choroidal endothelial cell basement membrane; Bars: (A and B), 1 μm; (C and D), 2 μm; and (E to F), 200 μm.
On the other hand, foveal RPE density was relatively stable from the 2nd through the 9th decades, with no significant decrease in cell density (Gao and Hollyfield 1992).

Another study investigated the age-related changes in RPE in an even larger number of eyes from donors from the 2nd to the 9th decade (Panda-Jones et al 1996). Using a 3 mm trephine the authors collected RPE/retina/choroid in the fovea and in the superior, inferior, temporal, and nasal meridians in 6 rings that were arranged concentrically around the fovea. These samples were also analyzed as whole-mount preparations. As in the previous study, the authors concluded that RPE density at the foveal center was the highest and that it decreased significantly from the fovea to the mid-retinal periphery. In the periphery, RPE density was the highest in the nasal region. The age-related loss was most marked in the fovea and the mid periphery. The authors determined that RPE cell density in the fovea decreased significantly by about 0.3% per year with increasing age.

The elderly suffer from loss of visual acuity (Weale 1975; Del Viva and Agostini 2007), color perception (Ohta and Kato 1975; Page and Crognale 2005), and dark-adaptation sensitivity (McFarland et al 1960; Werner 2005). These conditions are probably associated with age-related death of RPE and photoreceptors. It is important to understand the mechanisms involved in these cell deaths. One study specifically addressed this issue by analyzing age-related RPE apoptosis through terminal deoxynucleotidyl transferase-mediated dUTP nick end (TUNEL)-labeling in whole-mount preparations of eyes divided into 4 concentric regions centered on the fovea. Overall, analysis showed that TUNEL-positive RPE cells were uncommon. There was a significant positive correlation between the donor’s age and the number of apoptotic cells. Analysis of the individual regions revealed that within zone 1 (0–1.5 mm radius) the proportion of apoptotic RPE cells started to increase in the 6th decade. There was also an age-dependent increase in

Figure 3 Age-related changes in RPE density. Bright-field micrographs of RPE whole-mounts from both young (A and B) and aged (C and D) donor eyes. Observations were carried out both in the fovea (A and C) and periphery (B and D) of the eyes. Foveal RPE cells are smaller and more homogeneous than the peripheral RPE cells independent of the age of the donor. Bars, 200 μm.
apoptosis within zone 2 (1.5–3.0 mm radius, at a much lower number) (Del Priore et al 2002).

RPE changes and loss in AMD

AMD is the most common cause of irreversible blindness in the elderly population in industrialized countries (Leibowitz et al 1980; Klein et al 1995; Kelin et al 2004). Although aging is an important event that contributes to the pathogenesis of AMD, it does not directly lead to the occurrence of AMD (Sarks 1976; Young 1987). AMD occurs in two forms: neovascular or exudative (wet) and atrophic (dry) AMD. Neovascular AMD is characterized by abnormal growth of capillaries from the choroid into the Bruch’s membrane and RPE and by subsequent exudation of fluid, lipid, and blood. It results ultimately in a disciform scar in the macula and is responsible for severe, sudden visual loss (Holloway and Verhoeff 1929; Verhoeff and Grossman 1937). Atrophic AMD, also known as geographic atrophy (GA) is characterized by a progressing course leading to degeneration of RPE and photoreceptors. Studies have shown that the atrophy initially tends to develop in the perifoveal area, while the fovea may be spared until later during the clinical course (Sarks et al 1988; Sunness 1999). GA is characterized by a loss of the outer neurosensory retina, the RPE, and the choriocapillaris (Figure 4). The primary dysfunction and cell death of the RPE cells is thought to occur initially, followed by collateral loss of neighboring photoreceptor cells and choriocapillaris (Sarks et al 1988; Roth et al 2004). Previous studies have shown that photoreceptor apoptosis is involved in AMD pathology (Green and Enger 1993; Xu et al 1996). Recently, another study quantified the number of TUNEL-positive cells in each retinal layer in cryosections of AMD and control eyes. The authors showed that maculas with AMD had a statistically significant increase in TUNEL-positive RPE cells compared with the control ones. In the GA eyes, TUNEL-positive rods and RPE nuclei were present near the edges of RPE atrophy (Duniaif et al 2002). Additional data also suggest that A2E, a lipofuscin component, induces apoptosis in RPE cultures (Suter et al 2000). Finally, apoptosis was also observed in surgically excised choroidal neovascular (CNV) membranes from AMD-affected eyes (Hinton et al 1998).

Clinical features common in both types of AMD include the presence of drusen and hypo- and hyperpigmentation of the RPE. Histological features of RPE in AMD include accumulation of lipofuscin, formation of drusen and of basal deposits in the BM, and alteration in the BM extracellular matrix (Hogan 1972; Sarks 1976; Young 1987; Green and Enger 1993; Roth et al 2004; Nowak 2006). As mentioned above, these features are also observed, with lower intensity, in the aging RPE. However, the changes in AMD lead to severe loss of vision.

AMD is a multifactor disease with genetic components (Klaver and Allikmets 2003; Gold et al 2006; Hageman et al 2006; Scholl et al 2007). However, exogenous factors such as light exposure, a high fat diet, high blood pressure, and smoking (Leibowitz et al 1980; Cruickshanks et al 1993; Cousins et al 2002) are known to modulate its pathogenesis. In addition, abnormal regulation of the complement system, likely caused by the Y402H polymorphism in the complement factor H gene on 1q, is a recognized risk factor for AMD, as is the A69S variant in the poorly characterized LOC387715 gene and the serine protease HTRA1 in multiple populations (Edwards et al 2005; Haines et al 2005; Jakobsdottir et al 2005; Klein et al 2005; Rivera et al 2005; Dewan et al 2006;
Yang et al. 2006). On the other hand, polymorphisms in the factor B and complement component 2 are associated with decreased susceptibility to AMD (Gold et al. 2006; Spencer et al. 2007). Previous studies had identified the genes ABC4, APOE, TLR4, and FBLN5 as being associated with susceptibility to AMD. However, the fraction of AMD patients carrying sequence changes in these genes was very small (Scholl et al. 2007).

As mentioned above, complement activation has been implicated in susceptibility to AMD, mainly through complement factor H. It is synthesized mainly in the liver and released into the blood where it is transported to other tissues. However, high levels of complement factor H are detected in the retina-choroid interface (Mandal and Ayyagari 2006; Chen et al. 2007). This expression increases with age (Mandal and Ayyagari 2006). In addition, it was suggested that the RPE synthesizes complement factor H locally (Hageman et al. 2005). The RPE production of factor H would increase the local concentration of complement regulators and provide protection to inappropriate complement activation at sites of infection and inflammation (Rodriguez et al. 2004). This mechanism would be particularly important in the retina, as the complement factors supplied by the blood may be restricted through the blood-brain barrier (Mandal and Ayyagari 2006).

Several reports have shown that oxidative mechanisms constitute the initial stimulus that triggers apoptosis, thereby contributing to the progression of AMD. The retina is highly susceptible to photo-oxidative damage due to its high oxygen demand, life-long exposure to light and the presence of polyunsaturated fatty acids highly enriched in the photoreceptor outer segments (Beatty et al. 2000; Roth et al. 2004). This scenario is aggravated with age, for there is a reduction in the local antioxidative enzymes in the RPE and a decrease in macular pigment density, which serves not only as a filter for short-wavelength light, but also as an antioxidant, through its two constituents, lutein and zeaxanthin. The age-related increase in oxidative stress leads to cellular events which in turn induce the histopathological changes associated with AMD, as described above. An animal model recently described the connection between oxidation, inflammation and pathology of AMD. In this model, mice were injected with mouse serum albumin adducted with carboxyethylpyrrole, an oxidation fragment generated from the proteoreceptor-enriched lipid docosahexaenoic acid. Injected mice develop antibodies to this hapten, fix high amounts of complement component 3 in Bruch’s membrane, accumulate drusen below the RPE, and develop lesions in the RPE-photoreceptor interface that mimic AMD (Hollyfield et al. 2007). The severity of the cellular lesions correlated with the antibody production titer.

Outlook

The aged RPE is characterized by several structural changes, which are exacerbated in AMD. These structural changes are known to be associated with an increase in oxidative stress and general decline of basic functions. Recently, it became evident that RPE and choriocapillaris express many if not all of the components and regulators of the complement cascade. Moreover, the RPE also plays an important role in the development of immune and inflammatory responses in the posterior part of the eye through production of cytokines. However, little is known about it in aging. The connection between oxidation and immune system in aging will provide a powerful approach for the elucidation of the many senile degenerative macular and peripheral retinal diseases such as AMD.

Acknowledgments

The author thanks Mary E Rayborn for critical review of the manuscript and for the help with electron microscopy and Joe G Hollyfield for critical comments on the manuscript and constant support. Human eyes used in this review were obtained through the Retinitis Pigmentosa Foundation Donor Program (Owings Mills, Maryland USA). Research was supported by NIH grants R21EY017153; a Research Center grant from the Foundation Fighting Blindness; a Challenge Grant from Research to Prevent Blindness; and an NEI infrastructure grant (EY015638).

References

Semenogelins in the human retina: Differences in distribution and content between AMD and normal donor tissues

Vera L. Bonilha a,*, Mary E. Rayborn a, Karen G. Shadrach a, Yong Li a, Ake Lundwall b, Johan Malm b, Joe G. Hollyfield a

a Department of Ophthalmology, The Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA
b Department of Laboratory Medicine, Lund University, University Hospital, MAS, S-205 02 Malmö, Sweden

Received 13 August 2007; accepted in revised form 17 October 2007
Available online 25 October 2007

Abstract

The two cellular targets of interest in age-related macular degeneration (AMD) are the photoreceptors and the RPE. However, the mechanisms involved in AMD pathology are not yet fully understood. In the present report, we extend our previous studies on semenogelin proteins (Sgs) in normal human retina and compare these with the distribution in retinas from AMD donor eyes. Semenogelins I (SgI) and II (SgII) are the major structural protein components of semen coagulum, but have been recently found in non-genital tissues as well. Cryo and paraffin sections of human retina were processed for both immunofluorescence and DAB reaction with a specific antibody. The presence of SgI was analyzed in retina and RPE total lysates and SgI was detected by western blot in human retina and RPE. The intensity of immunoreactivity was significantly reduced in the AMD eyes. SgI is expressed in the normal human retina and in the retina of AMD donor eyes, where localization was detected in the photoreceptors and in a few ganglion cells. We find the distribution of SgI in the AMD retinas substantially lower than observed in normal retina. SgI localization to photoreceptors and the RPE suggests a possible function related to the ability of these cells to sequester zinc.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: semenogelins; zinc; immunohistochemistry; AMD; retina

1. Introduction

Semenogelin proteins I and II are the major secretory products from the glandular epithelium of the seminal vesicles and the epididymis (Bjartell et al., 1996). Semenogelin I (SgI) is a non-glycosylated protein with a molecular mass of 50 KDa (Lilja et al., 1989; Lilja and Lundwall, 1992). Semenogelin II (SgII) has a molecular mass of 63 KDa (Lilja and Lundwall, 1992); it has a potential site for N-linked glycosylation. Approximately half of the SgII molecules in seminal plasma are glycosylated, yielding two molecular species with an apparent mass difference of 5 KDa (Lilja and Laurell, 1985). Studies have indicated a role of semenogelin proteins (Sgs) related to capacitation and motility of sperm (Robert and Gagnon, 1996; de Lamirande et al., 2001; de Lamirande, 2007). More recently, high Zn²⁺-binding capacity of both SgI and SgII (Jonsson et al., 2005) was demonstrated, suggesting that Sgs might function as important regulators of extracellular Zn²⁺ homeostasis.

Recently, Sgs expression was characterized in non-genital tissues like trachea, bronchi, skeletal muscle cells, and cells in the central nervous system (Lundwall et al., 2002), suggesting additional yet unknown functions for these molecules. Our recent studies of normal human retina showed that both Sgs are found in this tissue (Bonilha et al., 2006).

Earlier clinical trial data found a significant decrease in the progression of age-related macular degeneration (AMD) in individuals supplemented with antioxidants and zinc (Age-Related Eye Disease Study Research Group, 2001; Clemons et al., 2005; Schmidt-Erfurth, 2005). The cellular targets in AMD are the RPE and macular photoreceptors (Penfold et al., 2001). Our observations that Sgs are localized to...
photoreceptors and the RPE may point to a function related to the ability of these cells to sequester Zn$^{2+}$ for protection against AMD. In this regard, we decided to define the distribution of Sg in the eyes from donors with diagnosed AMD.

The purpose of this investigation was to define the distribution of Sg in the eyes from donors with diagnosed AMD and to compare this with the distribution in normal eyes. We found that the content of Sg in the AMD eyes was substantially lower than that observed in the normal retina.

2. Material and methods

2.1. Human eye tissue

Donor eyes were obtained from the Cleveland Eye Bank or through the Foundation for Fighting Blindness Eye Donor Program (Owings Mills, MD). Tissue from 20 different donors was analyzed. The donor ages varied between 35 and 97. The interval between death and tissue processing varied between 4 and 14 h. The records received from the eye banks stated the donor eyes as AMD and non-AMD. Upon dissection the eyes were imaged and further classified as AMD or not. There were three eyes with GA, two with end-stage AMD displaying fibrovascular scar and the remaining eyes were either stage 2 or 3. Control eyes did not have any drusen in the macular area. The immunocytochemistry and Western analysis are exempt from IRB approval.

2.2. Preparation of human RPE and retina lysates

RPE cells were isolated using the protocol initially described (Nakata et al., 2005) with mechanical removal of the retina and brushing of the RPE from the choroid. RPE cells were pelleted down, the PBS was removed and the fresh PBS containing protease inhibitors was added to the cells. The RPE cells were kept at -80°C until used. When ready to use, RPE lysates were diluted 1:1 with 2× radioimmunoprecipitation buffer (RIPA) (0.2% SDS, 2% Triton-X100, 2% deoxycholate, 0.15 M NaCl, 4 mM EDTA, 50 mM Tris pH 7.4) containing a cocktail of protease and phosphatase inhibitors (Sigma, St. Louis, MO, USA). Pieces of retinas collected from human donor eyes were collected into epipendorff tubes and lysed in 1× RIPA buffer. Cells were lyzed for 1 h at 4°C in the rotator, centrifuged for 10 min at 14,000 rpm and the supernatants were transferred to clean tubes and the protein concentration was determined using the MicroBCA kit (Pierce Biotechnology, Inc., Rockford, IL) according to the manufacturer’s directions.

2.3. Western blot analysis of lysates

Forty micrograms of protein of each sample was boiled in SDS sample buffer (62.5 mM Tris–HCl (pH 6.8), 25% glycerol, 0.01% bromphenol blue, and 2% SDS), separated on a 10–20% Novex-Tris-Glycine gel (Invitrogen Corporation, Carlsbad, CA) and electro-transferred to Immobilon PVDF membranes (Millipore, Bedford, MA) using a Bio-Rad Semi-Dry Electrophoretic Transfer Cell (20 min transfer at 18 V). Positive control was unliquefied seminal fluid in buffer containing 4 M urea. Membranes were incubated with antibodies to SgI (cross reactivity with SgII ~5%) in Blotto A buffer (20 mM Tris/HCl, 0.9% NaCl, 0.05% Tween 20 (TBST), 5% skimmed milk) for 1 h. Protein detection was performed with secondary antibodies conjugated to peroxidase and visualized using chemiluminescence Reagent Plus (NEN™ Life Science Products, Inc., Boston, MA) detection system. PVDF membranes were exposed to film, films were scanned and figures were composed using Adobe Photoshop 5.5.

The gels were stained with Gelcode Blue (Pierce), after partial transfer to PVDF membranes to serve as a reference for the load homogeneity of the samples as previously described (Bando et al., 2007). Briefly, both gel and blot were digitized using a densitometer, and the density of the gel and bands was measured and transferred to pixels using Quantity One 4.2.3. A rectangular area was drawn around the most intense band signal in the scanned blots and used as a template to measure the pixel intensity in each band. A rectangular area was drawn around each gel lanes and used to determine the number of pixels in these areas. Plotted signals represent pixel intensity for each band subtracted from the background signal. The total protein pixel density from each donor lane stained with Gelcode Blue in the transferred gel was quantitated. The previously determined number of pixels in the Western blot was divided by the pixels in the Gelcode Blue lane, and these were then used to establish the pixel count per sample. The average pixel count was determined as a mean of all the AMD and non-AMD samples. Standard deviation, standard error and t-test were calculated and are presented in Section 3.

2.4. Immunohistology of tissue

To determine the localization of SgI in AMD eyes, immunohistochemical assays were performed using cryo and paraffin sections of human eyes and paraffin section of isolated human Bruch’s membrane/choroid in the perimacular area. Eye pieces were cut and fixed by immersion in 4% paraformaldehyde made in PBS for 3 h at 4°C. For isolated Bruch’s membrane-choroid, a 2 × 10-mm strip was isolated from the eyecups as previously described (Bando et al., 2007) and fixed by immersion in 4% formaldehyde freshly prepared from paraformaldehyde in phosphate buffer at pH 7.2 overnight. Non-AMD drusen was isolated from the perimacular area of the eyes while AMD drusen was isolated from the macular area. The isolated Bruch’s membrane/choroid with drusen and retinas were then dehydrated through a series of ethanol solutions and embedded in paraffin using an automated tissue processor (Leica Microsystems TP1020, Benneck Burn, IL). Seven- to eight-micrometer sections were cut on a Leica RM2125 microtome (Leica Microsystems) and sections were collected on Superfrost/Plus Slides (Fisher Scientific, Pittsburgh, PA). Sections were stretched on the slides on water and adhered to the slides by room temperature incubation overnight followed by 2 h incubation in an HI1210 slide warmer at 60°C (Fisher Scientific). Prior to labeling, paraffin was removed through two consecutive xylene incubations for 10 min. Next
the tissues were gradually re-hydrated by sequential incubation on ethanol 100%, 90%, 70%, 50% and 30% for 5 min each and processed for peroxidase-DAB labeling as previously described (Bonilha et al., 2006). After rehydration to PBS, sections were subjected to heat-mediated antigen retrieval by pressure cooking in 10 mM citric acid buffer, pH 6.0. Sections were probed with previously described rabbit antibodies to Sgl in 5% BSA, PBS and 0.3% Triton-X100 overnight at 4 °C (Bjartell et al., 1996; Malm et al., 1996). The controls omitted the antibodies. Sections were washed, incubated with secondary antibody conjugated to biotin for 1 h at RT, washed, and incubated with avidin in PBS for 30 min, then developed with DAB for 2 min. The sections were examined with a Zeiss Axioskop light microscope and the images were digitized using a Hamamatsu CCD camera.

For cryosectioning, eye pieces of retina-RPE-choroid tissue were fixed as described above, quenched with 50 mM NH₄Cl made in PBS for 1 h at 4 °C, infused successively with 15% and 30% sucrose made in the same buffer and with Tissue-Tek “4583” (Miles Inc., Elkhart, IN). Ten- to twelve-micrometer cryosections were cut on a cryostat HM 505E (Microm, Walldorf, Germany) equipped with a CryoJane Tape-Transfer system (Instrumedics, Inc., Hackensack, NJ, USA). For labeling, sections were blocked in PBS supplemented with 0.3 mM CaCl₂ + 1 mM MgCl₂ + 1% BSA (PBS/CM/BSA) for 30 min, and incubated with the antibodies to Sgl. Cell nuclei were labeled with TO-PRO®-3 iodide (Molecular Probes). Secondary antibody (goat anti-rabbit IgG; 1:1000) was labeled with Alexa Fluor 488 (green). Sections were analyzed using a Leica laser scanning confocal microscope (TCS-SP2, Leica, Exton, PA). A series of 1 μm xy (en face) sections were collected. Each individual xy image of the retinas stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). Microscopic panels were composed using Adobe Photoshop 5.5 (Adobe, San Jose, CA).

3. Results

3.1. Immunolocalization of Sgl reduced in the retinas of AMD donors

To dissect the molecular localization of Sgl in the neural retina of AMD donors, eyes were processed for cryosectioning (Fig. 1A–C) and paraffin embedding (Fig. 1D, E) followed by

Fig. 1. Sgl localization is low in the retinas of AMD donors. Sgl staining is significantly reduced in all layers of the AMD retina when compared to the non-AMD eyes. Specifically, reduced labeling was observed in the photoreceptors and RPE cells. Five control and 8 AMD donors were analyzed. Human cryosections of human donors previously diagnosed with AMD (B, C, E) and non-AMD eyes (A, D) were probed with Sgl antibody in 5% BSA, PBS and 0.3% Triton-X100 overnight at 4 °C. Sections were washed, incubated with fluorophore-conjugated (A–C) or peroxidase-conjugated (D, E) secondary antibody. The controls (not shown) were omitted the antibodies and did not display any labeling. Non-AMD control retinas displayed Sgl in the choroid, RPE, photoreceptor cells, cells in the inner nuclear layer, and ganglion cell layer, while in the AMD retinas Sgl was mostly confined to the photoreceptor cells (B). Ch, choroid; RPE, retinal pigment epithelium; PIS, photoreceptor inner segments; POS, photoreceptor outer segments; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer. Arrows, ganglion cells; bars: (A–C), 40 μm; (D, E), 200 μm.
immunohistochemistry. The distribution of SgI was analyzed both in the retinal perimacular area of non-AMD human donors (Fig. 1A, D) and in the retinas of human donors previously diagnosed with AMD (Fig. 1B, C, E). Analysis of the AMD eye sections showed that SgI immunoreactivity is significantly reduced in all layers of the retina when compared to the non-AMD eye sections. Specifically, reduced labeling was still observed in the ganglion cells and photoreceptors inner and outer segments of the AMD eyes (Fig. 1B, C). The SgI labeling was almost completely abolished from end-stage AMD retinas with fibrovascular scar (Fig. 1C). Due to the high autofluorescence levels in the RPE/choroid layer these cells were analyzed by DAB reaction (Fig. 1D and E). A significant decrease in the SgI labeling of the RPE from AMD retinas (Fig. 1E) was observed when compared to the non-AMD control RPE (Fig. 1D).

3.2. Immunolocalization of SgI is decreased in the drusen of AMD donors

It is accepted that the pathogenesis of AMD involves changes of the RPE/Bruch’s membrane and underlying choriocapillaris. To further understand the molecular localization of SgI we analyzed the immunoreactivity of SgI in the Bruch’s membrane/choroid of AMD samples. Comparison of the AMD samples (Fig. 2F) showed that SgI staining is significantly reduced in the drusen from the AMD donor when compared to the non-AMD eyes (Fig. 2B). Control sections (Fig. 2A and E) had the antibodies omitted. Drusen and Bruch’s membrane are characterized by autofluorescence when observed in an epifluorescence microscope, in the FITC channel. This property was used to confirm drusen presence in Bruch’s membrane as shown in Fig. 2 (C, D, G, H).

3.3. SgI expression is decreased in the retina lysates of AMD donors

The differences in levels of expression of Sgs within the AMD and non-AMD retinas were addressed by Western analysis. Whole retina lysates were harvested, resolved in an SDS-PAGE and transferred to a membrane and reacted with SgI antibody (Fig. 3). Western blot using anti-SgI antibody revealed greater immunoreactivity in non-AMD (Fig. 3B, lanes 1–4) than in AMD retinas (Fig. 3B, lanes 5–8). After partial transfer to PVDF membranes the gels were stained with Gelcode blue to serve as a reference for the load homogeneity of the samples (Fig. 3A). Immunoblots of retina lysates obtained from AMD donor eyes demonstrated a significant decrease in SgI levels. Quantitation of these blots showed that SgI immunoreactivity was downregulated 3.7-fold lower in AMD samples when compared with non-AMD samples. These differences were statistically significant (p < 0.0056) (Fig. 3C).

Fig. 2. SgI localization is low in the drusen of AMD donors. SgI staining is significantly reduced in the drusen from the AMD donors. Eight-micrometer paraffin sections of isolated Bruch’s membrane and choroid from a human donor previously diagnosed with AMD (E–H) and non-AMD eyes (A–D) were probed with SgI antibody in 5% BSA, PBS and 0.3% Triton-X100 overnight at 4°C. Sections were washed, incubated with secondary antibody, conjugated to biotin for 1 h at RT, washed, and incubated with avidin in PBS for 30 min, then developed with DAB for 2 min. The controls (A, C, E, G) were omitted the antibodies and did not display any labeling. The sections were examined in bright field (A, B, E, F) or FITC channel (C, D, G, H). Observation of the samples in the FITC channel revealed the autofluorescence of the Bruch’s membrane and drusen. Five control and 8 AMD donors were analyzed. Bar, 200 μm.
3.4. SgI is decreased in RPE lysates from AMD donors

The differences in levels of expression of Sgs within the AMD and non-AMD RPE were addressed by Western analysis. RPE lysates were harvested, resolved in an SDS-PAGE and transferred to a membrane and reacted with SgI antibody (Fig. 4). Western blot using anti-SgI antibody revealed greater immunoreactivity in non-AMD (Fig. 4B) than in AMD retinas (Fig. 4D). Immunoblots of RPE lysates obtained from AMD donor eyes demonstrated a significant decrease in SgI levels. Quantitation of these blots showed that SgI immunoreactivity was downregulated 5.6-fold lower in AMD samples compared with non-AMD samples (Fig. 4E). These differences were statistically significant ($p < 0.0001$).

It is important to notice that both the Western blot analysis and the immunohistochemistry analysis indicated higher levels of immunoreactivity present in non-AMD than in the AMD tissues.

4. Discussion

For many years, Sg was believed to be present only in the male genital tract and to originate exclusively from seminal vesicles (Robert and Gagnon, 1996). However, with time and the development of more sensitive methods, the presence of SgI and SgII transcripts was demonstrated in several tissues throughout the human body as well as in several malignant tissues and cell lines (Hienonen et al., 2005; Lundwall et al., 1996).
Recently, we have shown the presence of both SgI and SgII in human retina and RPE lysates. Moreover, the Sgs distribution in the human eye tissues was associated with the choroid, RPE, photoreceptor cells, cells in the inner nuclear layer, and ganglion cell layer. In the photoreceptor cells, Sgs were observed in the inner and outer segments of both cones and rods and in the IPM (Bonilha et al., 2006). In the present study, we confirmed the presence of SgI in the retina of both non-AMD and AMD eyes. However, a significant decrease in the labeling of SgI was observed throughout the retina in the ganglion cell layer, cells in the inner nuclear layer, the photoreceptors, RPE and choroid of the AMD donor eyes. It was recently reported that both SgI and II display high Zn2+ binding capacity (Jonsson et al., 2005), suggesting that Sgs might function as important regulators of extracellular Zn2+ homeostasis. Our data suggest that Sgs function as extracellular storage reservoirs of Zn2+, wherefrom it could be easily and rapidly mobilized for various purposes. Low Sg levels in AMD, whether due to increased catabolism or decreased synthesis, could then perhaps be compensated for by increasing the daily intake of Zn2+.

Zinc is the second most abundant trace element in the human body and the most abundant in the eye where it plays a key role in the metabolism of the retina (Karcioglu, 1982). A randomized, placebo-controlled two years clinical trial showed that zinc supplementation reduced the risk of AMD development (Newsome et al., 1988). This early report was supported by the Age-Related Eye Disease Study (AREDS) clinical trial that found that long-term (~6 years) intake of zinc, alone or with antioxidants, significantly decreased the progression of AMD and reduced the rate of moderate vision loss in individuals (Age-Related Eye Disease Study Research Group, 2001; Clemons et al., 2005; Schmidt-Erfurth, 2005) suggesting that zinc deficiency is a suspected risk for AMD. The cellular targets in AMD are the RPE and macular photoreceptors (Penfold et al., 2001). Photoreceptors and RPE specifically were shown to be affected in Zn2+ deficiency assays (Leure-duPree and McClain, 1982; Miceli et al., 1999). Moreover, studies on human eyes showed a correlation between low cytoplasmic Zn2+ concentrations in RPE cells and signs of AMD (Newsome et al., 1994). Our observations showed that Sgl is significantly reduced but still observed in AMD photoreceptors and RPE cells. Further studies are necessary to understand if Sgs expression is correlated to the Zn2+ level in AMD retinas.

The formation of lipid and protein rich sub-RPE deposits, found both in the periphery and macula, has been suggested to be a risk factor in AMD. In the present study, we failed to detect Sgl in drusen from AMD donors using our Sgl...
antibody. However, SgI was recently identified in senile seminal vesicle amyloid, a common gender-specific localized form of fibril-related pathology found in older men (Linke et al., 2005). This same study has shown that SgI rendered amyloidogenic as a consequence of aging is only detected by a new SgI-reactive antibody but not by several SgI common antibodies. Amyloid β has been identified in AMD drusen (Anderson et al., 2004; Yoshida et al., 2005). A consequence of the low Sgs levels could be that Zn²⁺ binds to other extracellular proteins such as beta-amyloid, complement factor H, serum albumin and crystallins, known to bind Zn²⁺ (Lengyel et al., 2007). This new interaction might lead to the accumulation of Zn²⁺ in sub-RPE deposits. Future studies will address if age-related amyloid SgI is present in AMD drusen and its role in AMD pathology.

In conclusion, we report here a significant decrease in SgI content in the retina, RPE and Bruch’s membrane/choroid of AMD donors.

Acknowledgements

Supported by NIH grants EY017153, EY014240, a Research Center grant from the Foundation Fighting Blindness, a Challenge Grant from Research to Prevent Blindness, and an NEI infrastructure grant (EY015638).

References

Proteomics Reveal Cochlin Deposits Associated with Glaucomatous Trabecular Meshwork*

Sanjoy K. Bhattacharya‡§, Edward J. Rockwood‡, Scott D. Smith‡, Vera L. Bonilha‡, John S. Crabb‡, Rachel W. Kuchtey‡, Nahid G. Robertson‡, Neal S. Peachey‡, Cynthia C. Morton¶, and John W. Crabb***

From the †Cole Eye Institute and ‡Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, ¶Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, and **Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106

The etiology of primary open angle glaucoma, a leading cause of age-related blindness, remains poorly defined, although elevated intraocular pressure (IOP) contributes to the disease progression. To better understand the mechanisms causing elevated IOP from aqueous humor circulation, we pursued proteomic analyses of trabecular meshwork (TM) from glaucoma and age-matched control donors. These analyses demonstrated that Cochlin, a protein associated with deafness disorder DFNA9, is present in glaucomatous but absent in normal TM. Cochlin was also detected in TM from the glaucomatous DBA/2J mouse preceding elevated IOP but found to be absent in three other mouse lines that do not develop elevated IOP. Histochemical analyses revealed co-deposits of Cochlin and mucopolysaccharide in human TM around Schlemm’s canal, similar to that observed in the cochlea in DFNA9 deafness. Purified Cochlin was found to aggregate after sheer stress and to induce the aggregation of TM cells in vitro. Age-dependent increases in Cochlin were observed in glaucomatous TM, concomitant with a decrease in type II collagen, suggesting that Cochlin may disrupt the TM architecture and render components like collagen more susceptible to degradation and collapse. Overall, these observations suggest that Cochlin contributes to elevated IOP in primary open angle glaucoma through altered interactions within the TM extracellular matrix, resulting in cell aggregation, mucopolysaccharide deposition, and significant obstruction of the aqueous humor circulation.

Glaucoma encompasses a group of blinding diseases classified generally as primary, for which there is no known etiology, or as secondary, in which a previous illness or injury is contributory. Primary open angle glaucoma (POAG)† is the most common form of the disease, affecting 3 million Americans and over 70 million people worldwide (1). Vision loss in most but not all glaucoma cases is related to an increase in intraocular pressure (IOP) with subsequent damage to the optic nerve. The molecular basis of the pathology is understood poorly, but the risk for POAG clearly increases with age, and ethnicity plays a role (e.g., blacks exhibit a higher incidence of POAG than whites and at an earlier age of onset). Although specific genes have been implicated in glaucoma pathology, including for example, TIGR and its gene product of unknown function, myocilin, genetic studies to date remain inconclusive regarding glaucoma disease mechanisms (2).

Elevated IOP typically develops into glaucoma as a result of impeded aqueous humor outflow (3). Aqueous humor is actively produced by the ciliary epithelium in the posterior chamber of the eye and circulates through the pupil to the anterior chamber where it drains through the trabecular meshwork (TM) into Schlemm’s canal and the episcleral veins (4). Resistance to outflow occurs commonly in the TM, which has a complex extracellular matrix (ECM) composed of collagen beams lined with endothelium-like cells (5, 6). The mechanisms of resistance are not known; however, the pseudoendothelial cells in the TM produce a mucopolysaccharide (MPS) (7) that appears to function in attracting macrophages for phagocytic self-cleaning of the TM (8). A loss of control of MPS levels in the TM appears to disrupt the self-cleaning process and can result in large changes in IOP (9). In other sensory systems, MPS deposits in the cochlea have been associated with the late onset and progressive auditory and vestibular disorder DFNA9, which involves increased intracranial pressure (10, 11). Drugs for treating POAG slow the disease progression by reducing aqueous production or by increasing aqueous outflow but do not provide a cure. Trabeculectomy is the most common treatment of last resort for POAG and involves the surgical removal of a small amount of TM tissue and redirection of the aqueous flow through the conjunctiva to the episcleral vessels. To better understand the molecular mechanisms involved in glaucoma and specifically in the blockage of aqueous outflow, we initiated a classical proteomics study to compare the protein composition of glaucomatous TM obtained by trabeculectomy with that of normal TM. Here we present evidence that Cochlin, a protein associated with the auditory disorder DFNA9, is absent in...
normal TM but increases with age in glaucomatous TM in association with MPS deposits.

EXPERIMENTAL PROCEDURES

Tissue Procurement—Human eyes from 35 normal donors and 5 POAG donors, all between 40 and 85 years of age, were used in this study, and were obtained through the Cleveland Eye Bank. Eyes were enucleated within 12 h of death and stored at −80 °C until TM tissue was isolated by dissection. Normal control eyes were from donors with no visual field defects, no evidence of glaucoma, and without central nervous system abnormalities. Fixed human TM tissues used for immunohistochemistry were obtained from the Eye Donor Program of the Foundation Fighting Blindness (Owings Mills, MD). Glaucomatous eyes and tissues were from clinically documented POAG donors. Glaucomatous TM tissues (~1–2 mm³) were obtained by trabeculectomy from 30 POAG patients in the Cole Eye Institute, Cleveland Clinic Foundation, with institutional review board approval. Human tissue samples was extracted by homogenization in 100 mM Tris-Cl buffer, pH 7.8, with the Institutional Animal Care and Use Committee of the Cleveland Clinic Foundation.

Protein Analyses—TM tissue from cadaver and trabeculectomy samples was extracted by homogenization in 100 mM Tris-Cl buffer, pH 7.8, containing 5 mM dithiothreitol, 1 mM SmCl₂, 50 mM NaHPO₄, 1 mM diethylenetriaminepentaaetic acid, 100 mM butylated hydroxy tolouene, and 0.5% SDS. Insoluble material was removed by centrifugation (1000 rpm) and soluble protein was quantified by the Bradford assay (12), yielding ~15–20 μg of total soluble protein/trabeculectomy tissue sample (~1–2 mm³). Protein extracts were subjected to SDS-PAGE on 4–15% gradient gels (Bio-Rad), and the gels were used either for mass spectrometric proteomic analyses or for Western analyses (13). For protein identifications, gel slices were excised and digested *in situ* with trypsin, and peptides were analyzed by liquid chromatography electrospray tandem mass spectrometry using a CapLC system and a quadruplule time-of-flight mass spectrometer (QTOF2, Waters Corp., Milford, MA). Protein identifications from MS/MS data utilized the ProteinLynx™ Global Server (Waters Corp.) and Mascot (Matrix Science) search engines and the Swiss Protein and NCBI protein sequence data bases (13, 14). Western analysis on a polyvinilidene difluoride membrane utilized established protocols (15) and chicken polyclonal anti-Cochlin (15, mouse monoclonal anti-collagen II, and anti-glyceraldehyde-3-phosphate dehydrogenase (Chemicon International, Temecula, CA). For quantitative Western analyses, anti-mouse secondary antibody linked to 700 nm IR dye and anti-chicken secondary antibody coupled to 800 nm IR dye were used with analyses on an Odyssey infrared imaging system according to the manufacturer’s instructions (LI-COR Biosciences, Lincoln, NE).

Histochemical Analyses—Immunohistochemical analyses to localize Cochlin in ocular tissue were performed with cadaver eyes enucleated within 8 h of death and fixed immediately with calcium acetate-buffered 4% *para*-formaldehyde. Paraffin-embedded tissue was blocked and sectioned (12 μm) in 5% BlokHen (Aves Labs, Inc., Tigard, OR) in phosphate-buffered saline, then incubated overnight with 10 ng of anti-Cochlin antibody (15) at 4 °C and subsequently with 10 ng of rhodamine-conjugated secondary antibody (Jackson Immunoresearch Laboratories, Inc., West Grove, PA) for 1 h at room temperature. Sections were sealed with Vectashield and analyzed with a Nikon EFD-3 fluorescence microscope attached to a charge-coupled device camera. Movat’s pentachrome staining for MPS was performed on multiple sections from each donor tissue according to a published protocol (16).

Immunofluorescence—For immunofluorescence, 12-μm paraffin-embedded sections were labeled with antibodies specific to Cochlin and with a secondary antibody coupled to TRITC (red) and then analyzed using a Leica laser scanning confocal microscope (TCS-SP2, Leica, Exton, PA).

A series of 1-μm thick x-y (en face) images were collected and added to obtain an image representing a three-dimensional projection of the entire 12-μm section. Confocal microscopic panels were composed using Adobe Photoshop 5.5.

Aggregation Assays—TM cells, from rim tissue associated with healthy corneas used for transplantation, were isolated for *in vitro* assays by dissection and extracellular matrix digestion (17). TM primary cell cultures were established in Dulbecco’s modified Eagle’s medium containing 10% bovine serum, 50 units/ml penicillin G sodium, and 50 μg/ml streptomycin sulfate (Invitrogen). For the aggregation assay, approximately 3000 cells were seeded in 4-well plates (35-mm wells, BD Biosciences) and grown for 5–7 days at 37 °C in humidified air at 5% CO₂. The cells were washed with PBS, the FBS was aspirated, and then the cells were treated with 5 μg of either purified recombinant Cochlin or purified recombinant Notch produced in COS-7 cells or with an equal volume of medium from empty vector-transfected COS-7 cells after HA-affinity fractionation. To evaluate whether antibody could neutralize the observed cell aggregation, Cochlin (5 μg) was preincubated for 30 min with either 20 μg of polyclonal chicken anti-Cochlin or nonspecific chicken IgG (Immun System, Uppsala, Sweden), and then the mixture was used to treat the primary TM cells in an identical manner. After 2 min, Dulbecco’s modified Eagle’s medium with 10% bovine serum was added, and cells were further incubated for 24–36 h as above. Cells were examined with an inverted microscope (model IM 35, Zeiss) and photographed using the Pix Cell II microscope system (Arcturus, Mountain View, CA) equipped with an Olympus camera, an Hitachi digital converter/Sony visual screen, and a Dell Oph Plex GX 110 computer. Recombinant Cochlin and recombinant Notch-1 were produced in COS-7 cells with 3-HA and 4-HA epitope tags, respectively, using the pDeDNA 3.0 vector and SuperFect transfection reagent (Qiagen, Valencia, CA) (18, 19). The proteins were affinity-purified from the media of transiently transfected COS-7 cells using rabbit anti-HA antibody (X-11, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) coupled to protein A-agarose beads with dimethyl pimelimidate. Purified recombinant Cochlin was subjected to shear stress by passing the protein (5 μg) through a Hamilton syringe (50 μl) five times in 50 mM Tris-Cl, pH 7.5, 125 mM NaCl, and 0.1% genapol and then was analyzed by non-reducing SDS-PAGE immunoblotting.

RESULTS

Cochlin Is Uniquely Associated with Glaucomatous TM—Protein extracts from six POAG and six normal TM tissues were subjected to SDS-PAGE, the gel slices were excised (Fig. 1A), and the proteins were identified using well established
Cochlin Deposits in Glaucoma

Fig. 2. Cochlin expression in DBA/2J mice. Protein (≈10 μg) extracted from mouse TM was subjected to Western analysis with anti-Cochlin antibody. A, Cochlin expression in TM from C57BL/6J, CD1, BALBc/ByJ, and DBA/2J mice (all 10 weeks old) is shown with chemiluminescence detection. B, Cochlin expression is shown in TM from DBA/2J mice (1–16 weeks old) and a 16-week-old C57BL/6J control mouse detected using 800 nm IR dye-coupled anti-chicken secondary IgG.

FIG. 3. Histochemical localization of Cochlin in human TM. A, an anterior segment section stained with hematoxylin-eosin is shown. B–D, representative immunohistochemical analysis is shown with chicken polyclonal anti-Cochlin. B, normal TM from a 75-year-old Caucasian female donor; C and D, glaucomatous TM sections approximately 60 μm apart, obtained from a 77-year-old Caucasian female donor. Rhodamine-conjugated secondary antibody (anti-chicken) was used for immunofluorescence detection. Arrows, Cochlin deposits (C and D) that are ~80–150 μm; *, Schlemm’s canal. D, small and large arrows show spotty and large deposits, respectively. E and F, light microscopy of Movat’s pentachrome-stained tissue is shown. E, normal TM from a 75-year-old Caucasian female; F, glaucomatous TM from a 77-year-old Caucasian female. Arrow, MPS deposit around Schlemm’s canal. Bars = 100 μm (A, E, and F) and 40 μm (B–D).

mass spectrometric and bioinformatic methods. Overall, 368 proteins were identified, of which 52 were detected only in glaucomatous TM but with variable frequency (see supplemental Table I). Cochlin, a protein of unknown function, was the component identified most frequently in glaucomatous TM. Indeed, Cochlin was detected by mass spectrometry in 5 of the 6 POAG samples (see supplemental Table I) and by immunoblotting analyses in 20 of 20 glaucomatous TM samples but not in the 20 normal control TM samples, irrespective of cadaver or trabeculectomy tissue source (Fig. 1B). Based on these findings from human TM, we probed Cochlin expression in an established animal model of glaucoma, the DBA/2J mouse. This mouse line exhibits increased IOP at 6–8 months of age, with progressive damage to the optic nerve and progressive hearing loss (20). Western analyses of TM extracts from 10-week-old mouse line exhibits increased IOP at 6–8 months of age, with progressive damage to the optic nerve and progressive hearing loss (20). Western analyses of TM extracts from 10-week-old

Cochlin Causes in Vitro Aggregation of TM Cells—The Cochlin protein structure contains an amino-terminal factor C homology (FCH) domain, two von Willebrand factor A-like (VWFA) domains, and two potential N-linked glycosylation sites. The FCH domain is named after the horseshoe crab coagulation factor, which becomes activated on binding lipopolysaccharides, initiating a host defense coagulation cascade. The FCH domain exists with unknown function in several other proteins. VWFA domains exist in a number of ECM and immune system components, interact with collagen proteins such as GpIbα and integrin α5β1, and have been implicated in adherence to and aggregation of platelets and macrophages. To explore a possible role for Cochlin in inflammatory cell adhesion, we performed aggregation assays using human primary TM cells in culture and purified human recombinant Cochlin (Fig. 4). Aggregation of the TM cells was observed with the addition of exogenous Cochlin to the culture (Fig. 4A) but not with control protein Notch or with the empty recombinant vector-transfected medium (Fig. 4, B and C). Preincubating recombinant Cochlin with anti-Cochlin chicken antibody prior to adding it to the primary TM cell prevented cell aggregation, whereas preincubation with control chicken IgG did not (data not shown). Notably, the aggregation of purified recombinant Cochlin following shear stress was also observed by non-reducing SDS-PAGE Western analysis, suggesting that disulfide bond formation may be involved in the aggregation mechanism (Fig. 4F). These in vitro observations are consistent with an extracellular role for Cochlin involving interactions with ECM components such as collagen.

Age-dependent Changes in the Cochlin and Collagen Content of Glaucomatous TM—To probe the molecular role of Cochlin in glaucomatous TM and a possible connection with ECM instability, expression levels of Cochlin and type II collagen were compared by quantitative Western analyses of glaucomatous and normal TM from donors of ages 40–85 years (Fig. 5). An
age-dependent increase in Cochlin content was detected in glaucomatous TM, with a concomitant decrease in type II collagen. No significant change with age was apparent in the type II collagen content of normal TM. These results suggest that the increased presence of Cochlin may contribute to the alteration of ECM interactions in glaucomatous TM, perhaps resulting in the collapse or degradation of the collagen-containing microfibrils in TM beams.

DISCUSSION

Classical proteomic methods initially detected Cochlin in the TM of glaucomatous but not normal human donors, irrespective of whether the tissue source was a cadaver or a fresh surgical specimen. Subsequently, Cochlin was found to be uniquely associated with glaucomatous human TM by Western and immunohistochemical analyses of additional POAG and normal TM donors. Western analyses also demonstrated the presence of Cochlin in TM from the DBA/2J glaucomatous mouse but not from three other mouse strains that do not develop elevated IOP. Proteomic analyses identified many other proteins in human TM (see supplemental Table I), including myocilin; however, the significance of proteins detected only in glaucomatous TM remains to be determined. A recent expressed sequence tag (EST) analysis (23) reported 1888 possible expressed genes in normal human TM, including 198 of the 368 proteins (53%) identified in the present study. Other investigators (24) have demonstrated that protein and mRNA abundance levels in tissues are not directly proportional, and the lack of detection by LC MS/MS does not necessarily mean the absence of protein expression. Accordingly, comparisons of supplemental Table I data with the recent EST study results must be interpreted with caution. Our proteomic analyses were performed on individual, clinically documented TM samples, whereas the EST analysis was performed on mRNA pooled from 28 normal TM donors. The lack of rigorous quantitation further complicates the comparison of protein expression levels, which is exemplified by the EST detection of 28 clones of myocilin in normal donor TM in contrast to mass spectrometric detection of myocilin in 3 of 6 POAG TM analyzed but in none of 6 normal TM analyzed. Of relevance to the present study, two clones of Cochlin were observed in the EST analysis of pooled mRNA (23), implying a possible low level gene expression in normal TM. We have detected the COCH transcript in both normal and glaucomatous TM by reverse transcription PCR.\(^2\) Nevertheless, our Western analysis reproducibly failed to detect the protein in non-glaucomatous tissues regardless of the amount of TM analyzed, strongly suggesting that Cochlin was absent or in very low abundance in normal TM.

Cochlin is the product of the COCH gene, and its FCH domain is mutated in patients with the autosomal dominant nonsyndromic auditory and vestibular disorder DFNA9 (25, 26). COCH mutations have also been implicated in Ménière’s disease (with features of hearing loss and vertigo) (27) and in presbyacusis (age-related hearing loss) (28). These disorders are late onset and progressive in nature and parallel the clinical manifestations of POAG. Cochlin comprises the major non-collagen component of the ECM of the inner ear (29) but is also expressed in very low levels in the cerebellum and eye (25, 30).

Localization of Cochlin within the eye has not been reported previously. The protein structure is highly conserved, with human Cochlin exhibiting 94 and 79% amino acid sequence identity, respectively, with the mouse and chicken proteins. Cochlin is a secreted protein with three glycosylated isoforms detectable in human cochlea, with apparent masses of ~40, ~46, and ~60 kDa (15, 18, 31). Two Cochlin isoforms (~46 and ~60 kDa) were detected in glaucomatous TM; however, the antibody we used recognizes only the higher molecular weight isoforms (18). Misfolded Cochlin has been implicated in the formation of cochlear deposits in DFNA9; interestingly, the ~40- and ~46-kDa isoforms contain VWFA-like domains but lack the amino-terminal FCH domain, which contains the disease-associated mutations (18). It has been suggested (25, 30) that Cochlin plays a structural role in the architecture of the cochlea by binding to components of the ECM. In patients with DFNA9, there is a marked decrease in cellularity and an accumulation of eosinophilic deposits that obstruct the cochlear and vestibular nerve channels (16, 25, 32). In patients with POAG, Cochlin expression in the TM increases with age, along with acidophilic Cochlin deposits around Schlemm’s canal, which are formed apparently by interactions with MPS and other ECM components.

Cochlin VWFA-like domains may contribute significantly to deposit formation in TM because hydrodynamic forces induce von Willebrand factor aggregation in suspension and may influence cell adhesion rates in the circulation (33). Although both wild type and mutant Cochlin expressed in COS-7 cells are processed and secreted normally, without apparent aggregation (18, 34), we found that sheer stress could induce the in vitro aggregation of purified recombinant Cochlin, possibly through disulfide bond formation. ECM interactions appear likely to underlie the formation of Cochlin deposits in glaucoma; however, hydrodynamic forces may exacerbate the process.

Cochlin may remain in the ECM of glaucomatous TM for a prolonged period and interact through its VWFA-like domains with fibrillar collagens. Altered interactions between fibrillar collagens and other ECM components have been suggested to trigger collagen degradation (35). Even simple dissociation between collagens and the surrounding ECM proteins may result in collagen degradation (36). Perturbations in collagenous

\(^{2}\) S. K. Bhattacharya and J. W. Crabb, unpublished data.
Cochlin Deposits in Glaucoma

fibrellar assembly caused by changes in collagen levels are known to result in a loss of tissue-specific morphology (36). Normally absent in healthy TM, Cochlin in combination with MPS may disrupt collagenous fibrellar assembly and contribute to collagen degradation in glaucomatous TM. The age-dependent increase in Cochlin and decrease in type II collagen that we observed in glaucomatous TM are consistent with an altered ECM. Although decreased collagen biosynthesis cannot be ruled out, the increased Cochlin may help to dissociate collagen from other TM proteins, rendering the ECM more susceptible to proteolytic degradation, collapse, and debris deposition. The large Cochlin deposits observed in glaucomatous TM could obstruct aqueous outflow across a wide region and thus have the potential to increase IOP.

Does Cochlin cause increased IOP or does increased IOP up-regulate Cochlin expression and deposition? Purified Cochlin exogenously added to TM primary cells resulted in the aggregation of the cells. Although the physiological relevance of this observation remains to be established, it is possible that Cochlin overexpression is associated with cell aggregation and MPS deposition, resulting in increased resistance and significant obstruction of the aqueous outflow. It is noteworthy that Cochlin is detectable in the DBA/2 mouse TM shortly after birth, and therefore, its expression precedes the earliest signs of elevated IOP at 6–8 months of age (20). Overall, the evidence presented here suggests that Cochlin may be involved in the intermediate events in glaucoma that lead to increased IOP. In any event, the presence of Cochlin-MPS deposits in TM from POAG patients opens new therapeutic avenues for treatment, for example, by targeted strategies for decreasing Cochlin.

Acknowledgments—We thank Professors Ted Acott, M. Rosario Hernandez, Claude Burgoyne, and David Duker for valuable discussions and comments on the manuscript, Marg Esser for technical assistance, Professor Joe Hollyfield for valuable discussions and for previously fixed histological samples, and Drs. Roger Langston, David Meisler, Bennie Jeng, and Victor Perez for control tissues.

References

RESEARCH REPORT

Abnormal Distribution of Red/Green Cone Opsins in a Patient with an Autosomal Dominant Cone Dystrophy

Vera L. Bonilha and Joe G. Hollyfield
The Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA

Sandeep Grover and Gerald A. Fishman
Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA

Purpose: To define the distribution of the red/green and blue opsins in cones from donor eyes from an affected member of a clinically well-characterized family with an autosomal dominant form of cone dystrophy. Methods: Tissue was fixed and processed for immunohistochemistry. Cryosections were studied by indirect immunofluorescence, using well-characterized antibodies to cone cytoplasm, rhodopsin, and cone opsins. The cone-associated matrix was also labeled with the lectin PNA. The affected donor eyes were compared to a postmortem matched normal eye. Results: Electroretinogram (ERG) testing three years prior to the affected member’s death showed normal rod function, while the cone b-wave amplitude was reduced 40% below the lower limit of normal. Fundus exam showed only isolated drusen within the macula. Either a normal-appearing or only nonspecific macular findings were noted in the other affected family members who were examined. Immunofluorescence studies showed that blue cone opsin was restricted to the outer segments of blue cones in the affected retina. Red/green opsins were distributed along the entire plasma membrane of these cone types, from the tip of the outer segment to the synaptic base. Cone-associated matrix displayed a heterogeneous distribution. These patterns were observed both in the macula and in the periphery of the affected retina. Cone pedicles appeared larger than normal. In contrast, rhodopsin staining appeared normal. Conclusions: The immunocytochemical data obtained suggest that the clinical manifestation of this dystrophy is associated with an abnormal distribution of cone red/green opsins. Additionally, changes in the cone pedicles could have contributed to the abnormal cone ERG in this patient.

Keywords: Autosomal dominant cone dystrophy; cone opsins; clinical findings; immunohistochemistry

INTRODUCTION

There are two types of photoreceptor cells in the human eye, namely rods and cones. These two cell types perform different functions. Rods primarily mediate vision at low light levels, while the cone photoreceptors mediate vision under standard light conditions. Vertebrate retinal cones play a major role in both visual acuity and color perception. Several investigational methods have shown that the L (red) and M (green) cone pathways subserve high visual acuity as well as color vision through the midget ganglion cell pathway.1,2 On the other hand, the S (blue) cone pathway is characterized by having its own bistrati-
characterized both clinically and psychophysically and several causative genes have been identified.10,11 Many of these encode proteins involved in the cone phototransduction pathway. To gain further understanding of specific alterations of cone photoreceptors, immunocytochemistry studies with the eyes of a member from a family with an autosomal dominant form of cone dystrophy are discussed.

METHODS

Patient Information

The donor was an affected 85-year-old man who died from bladder and prostate cancer. He was an affected member (member IV-1, Fig. 1) of a family with an autosomal dominant form of cone dystrophy with incomplete penetrance. His eyes were obtained through the National Retinitis Pigmentosa Foundation Donor Program (donation number #686). The patient and several other affected members in the family were clinically evaluated. The donor had had an ocular exam three years prior to his death. Goldmann visual field and full-field ERG were also obtained at that time. Other selected members of the family underwent an evaluation by Goldmann visual field, full-field ERG, and either focal or multifocal ERG testing.

The clinical evaluation of the affected members was carried out at the University of Illinois with the approval of the Institutional Review Board (IRB) at the University of Illinois Medical Center. The immunocytochemistry analysis was performed in the Cleveland Clinic Foundation and is exempt of IRB approval.

Histopathology

The donor’s globes were fixed 14.5 h postmortem in a mixture of 4% paraformaldehyde and 0.5% glutaraldehyde made in 0.1 M phosphate buffer (pH 7.3). After a month in this fixative, the globes were transferred and stored in 2% paraformaldehyde prepared in the same buffer. As a control, the eyes from a 68-year-old female were fixed 14.5 h postmortem in 2% paraformaldehyde made in the same buffer. The tissues were infused successively with 10% and 20% sucrose in PBS, and embedded in Tissue-Tek ‘4583’ (Miles Inc., Elkhart, IN, USA). Twelve µm cryosections were cut on a cryostat HM 505E (Microm, Walldorf, Germany) equipped with a CryoJane Tape-Transfer system (Instrumedics, Inc., Hackensack, NJ, USA).

Sections were processed for immunofluorescence as previously described.12 Cryosections of both the matched control and affected donor tissues were labeled with the following antibodies: rabbit polyclonal antibody p4924A to blue cone opsin (1:10, from the late Dr. C. Lerea), rabbit polyclonal antibody p108B to red/green cone opsins (1:50, from the late Dr. C. Lerea), rabbit polyclonal antibody UW-16 to red/green cone opsins (1:200, from Dr. J. Saari, University of Washington, Seattle, WA, USA), monoclonal antibody B630N to rhodopsin (1:50, from Dr. P. Hargrave, University of Florida, Gainesville, FL, USA), and the

\begin{figure}
\centering
\includegraphics[width=\textwidth]{pedigree.png}
\caption{Pedigree of the family with autosomal dominant cone dystrophy with incomplete penetrance showing affected (solid symbols) and unaffected (open symbols) family members. The symbol x indicates patients examined personally; hatched symbols, patients who are affected by history but not personally examined; arrow, proband; single oblique line, deceased. The postmortem analysis in this study was done on member IV-1.}
\end{figure}
FIG. 2. Fundus photograph of both the right (A) and left (B) eyes of family member IV-1 showing a normal-appearing optic disc, retinal vessels, and macula with isolated drusen in the foveal region. Goldmann visual field of the right (C) and left (D) eyes of the same family member showing central scotomas to targets III4e and II4e with normal-appearing peripheral isopters. Right eye (OD) shows an additional central scotoma to target II2e.

monoclonal antibody 7G6 to cone cytoplasm (1:100, from Dr. P. MacLeish, Morehouse School of Medicine, Atlanta, GA, USA). Cone-associated matrix was labeled with PNA-FITC (1:100, Vector, Burlingame, CA, USA) and cell nuclei were labeled with TO-PRO®-3 iodide (1 µg/ml, Molecular Probes, Eugene, OR, USA). Secondary antibodies (goat anti-mouse or antirabbit IgG; 1:1000) were labeled with Alexa Fluor 488 (green) and Alexa Fluor 594 (red; Molecular Probes). Sections were analyzed using a Leica laser scanning confocal microscope (LSCM) (TCS-SP2, Leica, Exton, PA, USA). A series of 1 µm xy (en face) sections were collected. Each individual xy image of the retinas stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). Microscopic panels were composed using AdobePhotoshop 5.5 (Adobe, San Jose, CA, USA).

RESULTS

Clinical Findings

Figure 1 shows the pedigree of the family affected with an autosomal dominant form of cone dystrophy with incomplete penetrance. The donor (member IV-1), at age 85 years, was last examined three years before his death. At age 82 years, the patient complained of problems with central vision, but had no history of difficulty with peripheral or night vision. His best-corrected visual acuity was 20/200 in the right eye with a −0.75 D sph +1.00 D cyl at 90° and 20/200 in the left eye with a −0.50 D sph +1.00 cyl at 90°. Except for mild cataracts in both eyes, the anterior segment exam was normal. Fundus examination showed normal-looking optic disc, retinal vessels, and peripheral retina in both eyes. The fovea in each eye showed punctate drusen (Fig. 2A,B). Goldmann visual field (Fig. 2C,D) showed small central scotomas to targets III4e and II4e in both eyes and an additional central scotoma to target II2e in the right eye (Fig. 2C). The peripheral isopters were within normal limits. A full-field ERG recording obtained from the patient showed normal rod function and mildly subnormal cone function (Fig. 3).

Nine other affected family members were also examined (see Figure 1). The ages at the most recent visit ranged from 20 to 76 years. All the affected members initially noted problems with their central vision in the first (n = 7) or second (n = 2) decade of life. Five out of nine patients complained of photoaversion. None of them had any problems with peripheral or night vision. Best-corrected visual acuity in the better-seeing eye ranged from 20/50 to 20/70. Whereas all the affected members showed normal-looking optic discs, retinal vessels, and peripheral retina, only two out of nine had an entirely normal-appearing fovea. The foveal changes included a blunted foveal reflex (n = 4) or mild pigment mottling within the fovea (n = 3). Seven out of eight patients, on whom Goldmann visual field testing was performed, showed a relative central scotoma. Four out of seven patients on whom a full-field ERG was obtained showed normal cone and rod responses, two additional patients showed a normal rod response and reduced cone b-wave responses, and one patient had...
both rod and cone b-wave responses that were slightly reduced. In the two patients on whom full-field ERG data were not obtained, a multifocal ERG was obtained which showed reduced cone responses selectively in the central rings. Of the four members who had normal cone and rod responses on full-field ERG, a focal ERG was obtained in two and both were abnormal.

Histological Pathology

To understand some of the molecular changes associated with the autosomal dominant cone dystrophy (ADCD) phenotype in this family, both eyes of one of the family members (IV-1, Fig. 1) were processed for cryosectioning and immunofluorescence. The distribution of the red/green cone opsin was analyzed both in the retinal periphery and in the macular region of the ADCD-affected member (Fig. 4D-F) and a matched control eye (Fig. 4A-C). Cryosections of each donor eye were labeled with both a cone cytoplasmic marker (Fig. 4B, E) and with an antibody specific to red/green opsins (Fig. 4A, D). A striking abnormal distribution of the red/green opsin throughout the entire cone cell body was observed in all the ADCD-affected eyes (Fig. 4D-F) when compared to the matched control eye (Fig. 4A-C). This unique distribution was observed in all reactive cones present in the macula (Fig. 4) and the periphery (data not shown) of all the sections that were labeled and observed from the affected eye. The same unrestricted distribution of the red/green opsin was observed with a different red/green opsin antibody (data not shown). Cell nuclei, labeled with TO-PRO-3, did not display any significant difference to the matched control. The retinal pigment epithelium (RPE) and choroid also did not display any significant difference between both samples.

In addition, abnormally enlarged cone pedicles were observed in affected retina (Fig. 4H) when the entire cone cell body was labeled with a cone cytoplasm antibody and compared to the matched control eye (Fig. 4G). Again, these observations were apparent in both the macula and periphery (data not shown) of the affected eye.

In contrast, the blue cone opsin of the affected ADCD eye (Fig. 5D) displayed restricted distribution to the cone outer segments when compared to the matched control eye (Fig. 5A). Results are shown in the macula, but were also observed in the periphery.

The rod outer segments were visualized through labeling with rhodopsin antibodies. There was no detectable difference between the rhodopsin labeling of the ADCD-affected eye (Fig. 6E) and the control matched eye (Fig. 6B). Furthermore, the cone interphotoreceptor matrix (IPM) was also labeled in these eyes. Again, the cone-associated matrix of the ADCD-affected eye sections (Fig. 6D) was disorganized and heterogeneous when compared to the cone IPM from the control postmortem-matched eye (Fig. 6A). These findings were observed both in the macula (Fig. 6D) and retinal periphery (data not shown).

DISCUSSION

The diagnosis of cone dystrophy in this family was made on the basis of decreased central visual acuity in all ten affected members (8 out of 10 noted this symptom in their first decade of life and the remaining 2 in the second decade). Additionally, relative central scotomas were observed in eight out of nine members who were tested by Goldmann perimetry. Also considered in the diagnosis were decreased cone responses on electrophysiologic testing in eight out of ten affected members by either full-field (n = 4), focal (n = 2), or multifocal (n = 2) electroretinography. Progressive cone dystrophies show appreciable clinical
FIG. 4. Red/green cone opsins are distributed along the entire plasma membrane of this cone type in the ADCD patient’s retina. Human cryosections of both the ADCD family member (D-F) and the matched control (A-C) were labeled with antibodies specific to red/green cone opsins (green) (A,D) and the cone cytoplasm marker 7G6 (red) (B, E, G, H). Cell nuclei were labeled with TO-PRO-3 (blue). A series of 1 µm xy (en face) sections were collected using an LSCM. Each individual xy image of the retinas stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). The merged images are shown in C and F. Comparison of the samples showed that red/green cone opsins are distributed along the entire plasma membrane of these cone types, from the tip of the outer segments to the synaptic base in the ADCD eye, while they are restricted to the outer segments in the matched control eye. Higher magnifications showed that the cone pedicles of the affected retina (arrowheads) are markedly enlarged when compared to those in the normal retina. Bars: 40 µm and 20 µm (G and H).
FIG. 5. Blue cone opsin is restricted to the outer segments of the cones in the affected retina. Human cryosections of both the ADCD family member (D-F) and the matched control (A-C) were labeled with antibodies specific to blue cone opsin (green) (A, D) and the cone cytoplasm marker 7G6 (red) (B, E). Cell nuclei were labeled with TO-PRO-3 (blue). The merged images are shown in C and F. Sections were analyzed using an LSCM. A series of 1 \(\mu \text{m} \times \text{xy} \) (en face) sections were collected. Each individual \(\times \text{xy} \) image of the retinas stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). Comparison of the samples showed that blue cone opsin is restricted to the outer segments of the cones in both the normal and ADCD eyes (arrowheads). Bar: 40 \(\mu \text{m} \).

FIG. 6. Rod distribution is normal, but cone IPM is disorganized in the affected retina. Human cryosections of both the ADCD family member (D-F) and the matched control (A-C) were labeled with the cone IPM marker PNA (green) (A, D) and an antibody specific to rhodopsin (red) (B, E). Cell nuclei were labeled with TO-PRO-3 (blue). The merged images are shown in C and F. Sections were analyzed using an LSCM. A series of 1 \(\mu \text{m} \times \text{xy} \) (en face) sections were collected. Each individual \(\times \text{xy} \) image of the retinas stained represents a three-dimensional projection of the entire cryosection (sum of all images in the stack). Comparison of the samples showed that the cone IPM displayed a heterogeneous distribution in the affected eye sections. In contrast, rhodopsin staining was not different from the matched control eye. Bar: 40 \(\mu \text{m} \).
as well as genetic heterogeneity, which likely results from diverse molecular mechanisms underlying the pathogenesis and the functional loss of central vision.\(^5\)\(^-\)\(^9\) This study demonstrated substantial alterations in the distribution of red/green cone pigments compared to the distribution in normal control tissues. These changes included loss of opsin restriction to the cone outer segment, resulting in its distribution throughout the entire cone cell body. The pedicles of these red/green cones were enlarged.

A previous histological study that analyzed eyes from a patient with cone-rod dystrophy (CRD) detected shortening of photoreceptor outer segments in the central and far peripheral regions of the retina.\(^13\) More recently, analysis of a case of CRD and a case of central areolar choroidal dystrophy detected similar pathologic changes in the outer segments of both cones and rods with abnormally enlarged pedicles and axons.\(^14\) Our results did not detect any gross structural abnormalities associated with the photoreceptor cells. However, the presence of abnormal cone pedicles could possibly, at least in part, explain the slightly reduced cone ERG b-wave amplitude results recorded in our donor.

The outer segments of the cones contain visual pigments, which are excited by photons of absorbed light. Visual pigment consists of molecules composed of two distinct portions: a protein portion called opsin and a light-absorbing portion, which is the cis-retinal chromophore. Specific structural features of the opsin protein determine the wavelength sensitivity to light at the different regions of the visible spectrum. Our immunofluorescence studies were carried out with previously described antibodies specific to the red/green and the blue cone opsin.\(^15\)\(^,\)\(^16\)

Our labeling of the red/green opsins detected a large population of these cone types throughout the entire retina when compared to those with blue cone opsin. This result is in agreement with several reports demonstrating that the human retina is composed of roughly 90% red/green and 10% blue cones.\(^17\)\(^-\)\(^20\)

In this specific case of cone dystrophy, the most striking cone abnormality was the presence of red/green opsin distribution through the entire cone cell body instead of the usual restriction to the outer segment. A previous study of enhanced S-cone syndrome donor eyes reported the presence of abnormal distribution of both S (blue)- and L/M (red/green)-cone opsin along the entire plasma membranes of the cell, including their inner segments, cell bodies, axon, and pedicles.\(^16\) Moreover, a patient with X-linked cone degeneration (a known 6.5-kilobase deletion in the red cone pigment gene) showed a significant diminution of the red and green cone population when compared with an age-matched control eye. Some remaining red and green cones without outer segments, however, did stain weakly with the antibody to red and green opsin in the inner segments.\(^21\) Although the molecular mechanism of visual excitation in the cone is not well understood as in the rod, it is generally thought to involve a cone-specific G protein (cone transducin) that couples the cone visual pigment to a cGMP phosphodiesterase. The functional significance of the red/green opsin delocalization is not known, but it could result in a major loss of sensitivity which, in turn, could lead to sufficient cone degeneration to cause the scotomas detected in our affected patients. Furthermore, it is known that in primates, all cone types display opsin labeling throughout the entire cone cell body when they are first expressed in the fetal period becoming restricted to the outer segments later in their development.\(^22\)

It is not known whether the red/green opsins failed to become restricted to the outer segment in development or whether the normal distribution was lost during the progression of the disease.

In conclusion, we report the clinical findings and abnormal distribution of the red/green cone opsins throughout the entire cone cell body and the enlargement of the cone pedicles from a member of a family with an autosomal dominant form of cone dystrophy. These results are important to our understanding of one of likely several molecular mechanisms underlying various types of cone dystrophy.

ACKNOWLEDGEMENTS

The authors thank Dr. Peter MacLeish (Morehouse School of Medicine, Atlanta, GA, USA) for providing the antibody to cone cytoplasmic marker (7G6), Dr. Paul Hargrave (University of Florida, Gainesville, FL, USA) for providing the antibody to rhodopsin (B630N), and Dr. John C. Saari (University of Washington, Seattle, WA, USA) for providing the antibody to red/green cone opsins (UW-16). The anti-blue (p4924A) and red/green (p108B) cone opsin antibodies were prepared by the late Dr. Connie Lerea. This work was supported by The Foundation Fighting Blindness, Owings Mills, MD (JGH), The Grant Healthcare Foundation (GAF), and National Institute of Health (NEI) grant EY 015638 (JGH).

This work was presented at the Association for Research in Vision and Ophthalmology Annual Meeting, May 2004, and at the XIth International Symposium on Retinal Degeneration Meeting, August 2004.

REFERENCES

