VENOUS THROMBOEMBOLISM AND CANCER: PREDICTION AND PREVENTION

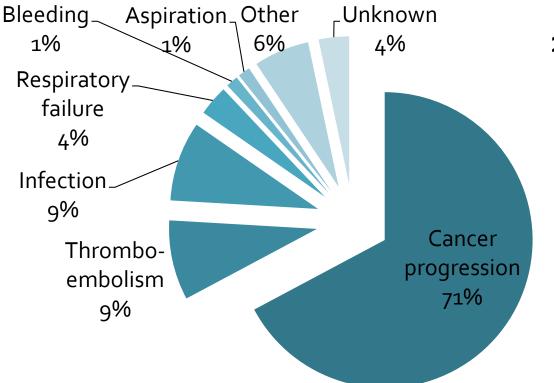
Alok A. Khorana, MD Taussig Cancer Institute Case Comprehensive Cancer Center

DISCLOSURES

Consultant for Sanofi & Leo

Why You Should Care: Prevalence, Consequences, Costs

Predicting VTE in Cancer

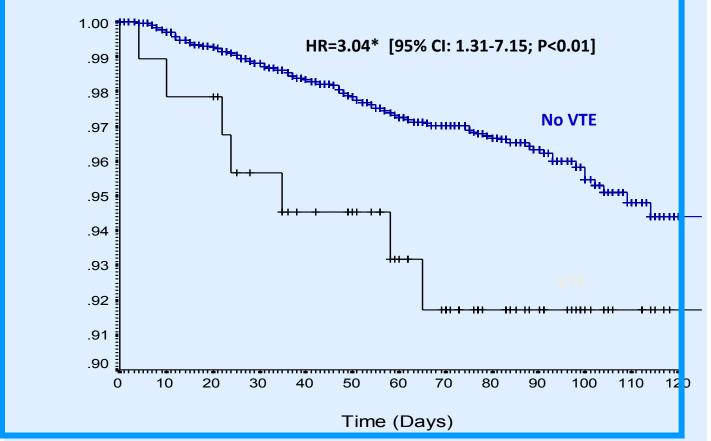

Preventing VTE in Cancer

Why You Should Care: Prevalence, Consequences, Costs

Predicting VTE in Cancer

Preventing VTE in Cancer

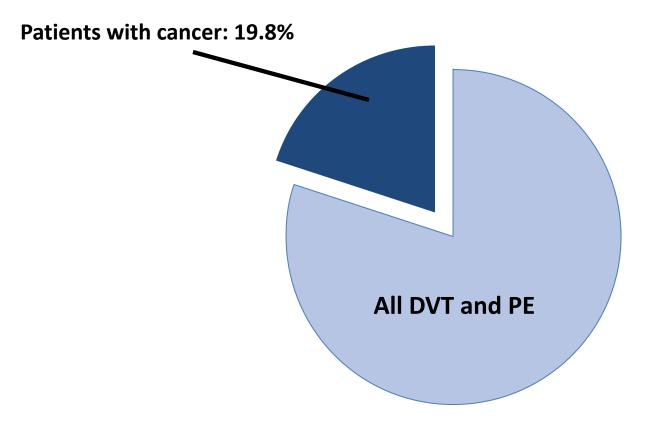
Why You Should Care: VTE AND MORTALITY



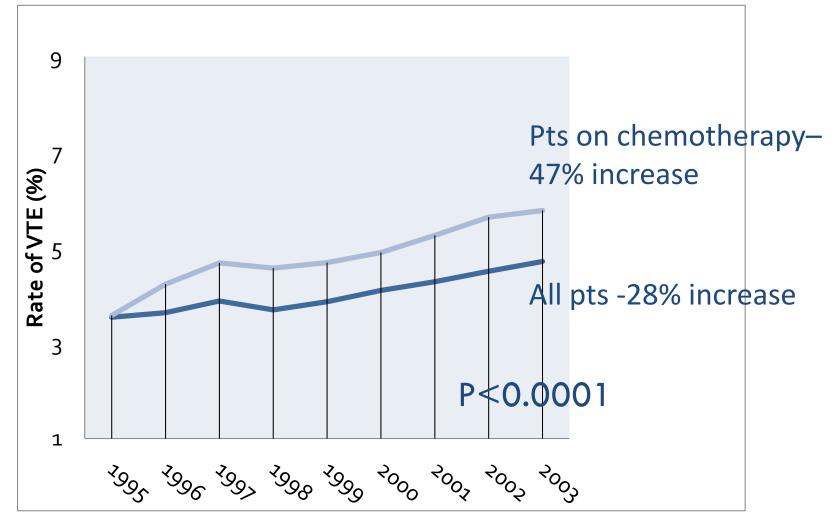
2nd leading cause of death in cancer patients

Accounts for 9% of deaths ¹ Associated with early mortality during chemotherapy (HR=6.98)² 47-fold increased risk of mortality from VTE¹

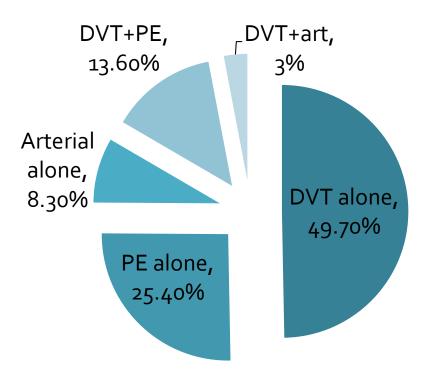
- 1. Khorana AA et al. J Thromb Haemost 2007
- 2. Kuderer NM et al ASCO 2008 # 9521


Why You Should Care: VTE and Mortality

Kuderer et al. ASCO 2009


*Adjusted for major confounders: Age, gender, race, cancer type, stage, year of therapy, chemotherapy type and dose intensity, major laboratory abnormalities, PS, BMI, and comorbid conditions

Why You Should Care: VTE and Public Health Burden


One-fifth of all VTE occurs in patients with cancer

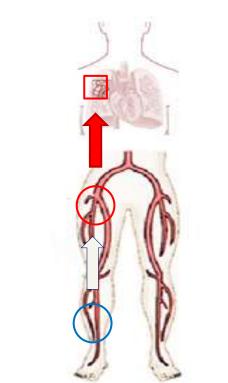
Why You Should Care: Increasing Frequency of VTE In Malignancy

Khorana AA et al. Cancer 2007

MSKCC Retrospective Analysis

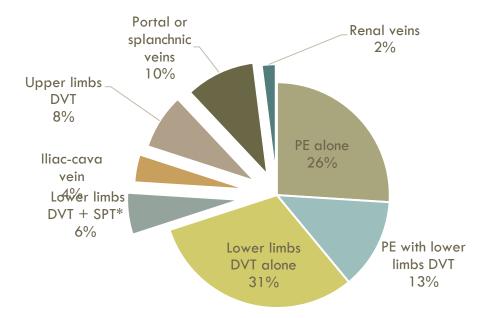
- 932 patients receiving cisplatin-based chemotherapy at MSKCC in 2008
- TEE occurred in 18.1%

Moore et al, JCO 2011


Cancer is Omnicoagulable

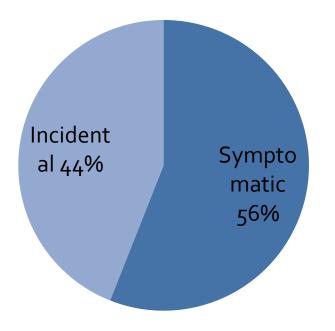
Natural history following major surgery

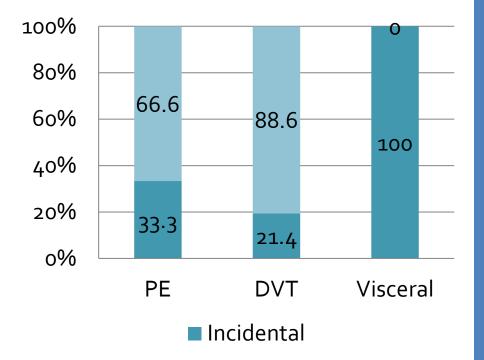
1/3


1/3

2/3

VTE in cancer with chemotherapy

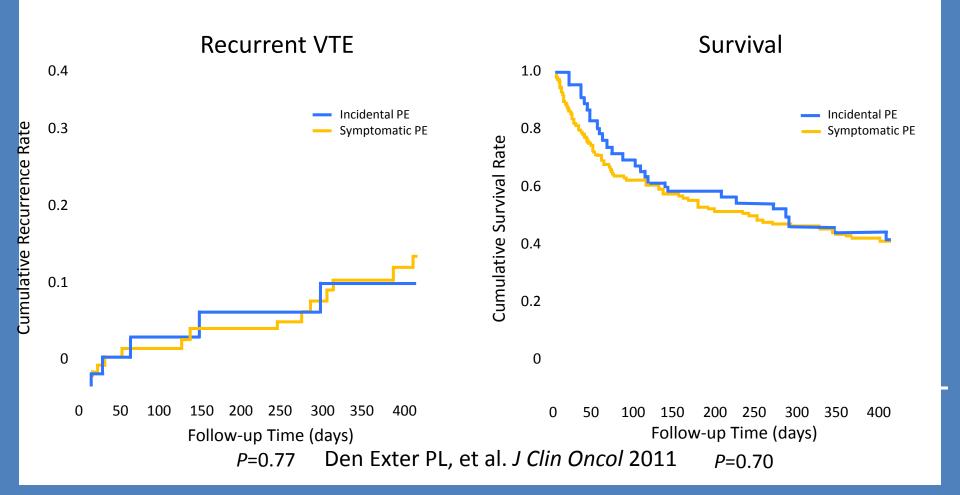

- Retrospective, single institution cohort study
- N = 1,921 medical records of cancer patients (solid T + chemotherapy)



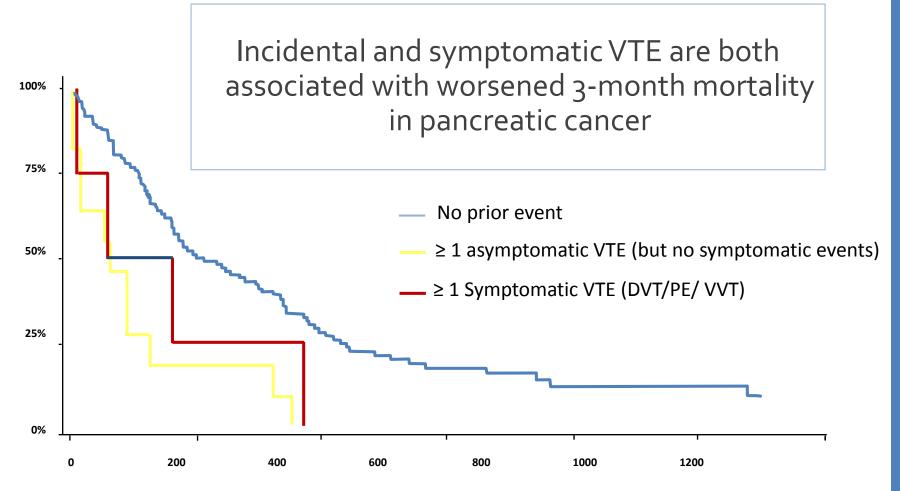
Incidental VTE

- VTE detected on imaging studies conducted for other indications, typically staging¹
 - PE or DVT
 - Visceral vein thrombosis
- Term "asymptomatic" VTE discouraged; patients often have unrecognized symptoms²
- Prevalence varies
 - 1.5-3.4% per scan in outpatient staging
 - 4-9% in hospitalized cancer patients

Proportion of Incidental VTE


N=932 patients receiving cisplatinbased chemotherapy at MSKCC¹

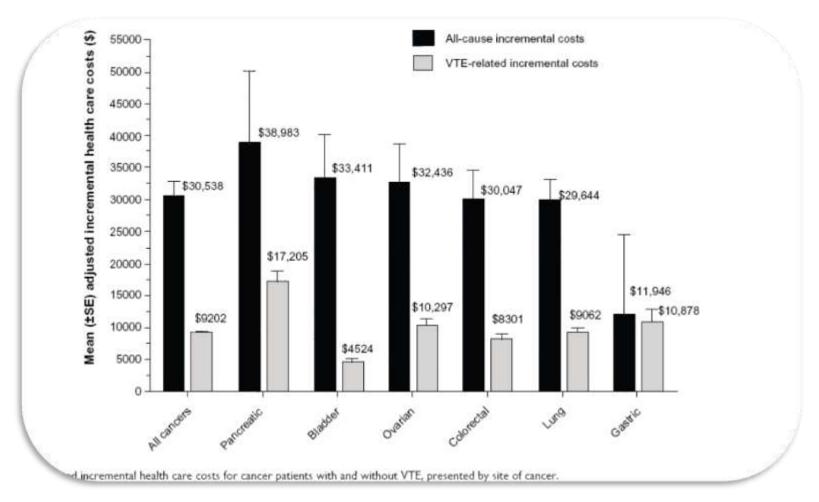
N=1,151 scans of 135 pancreatic cancer patients at UR²


1. Moore et al, J Clin Oncol 2011

2. Menapace et al, Throm Haem 2011

Incidental vs Symptomatic PE in Cancer

Incidental VTE in Pancreas Cancer

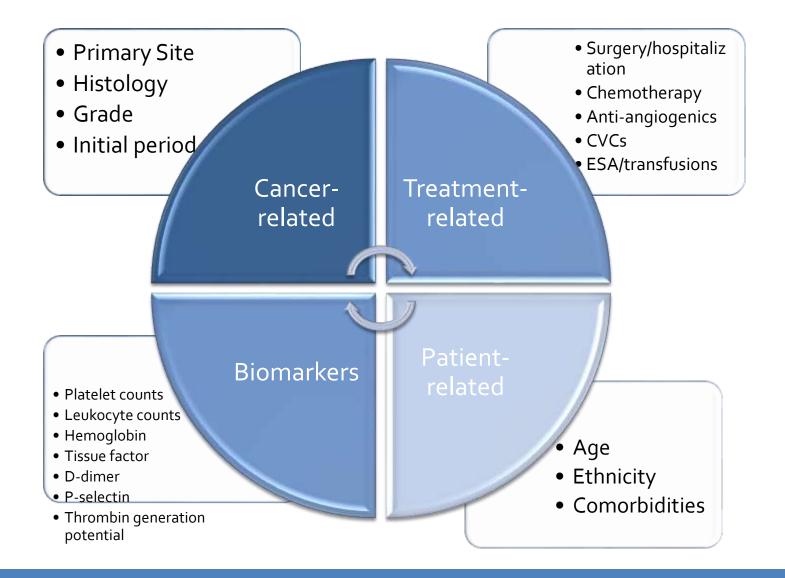


Menapace et al Throm Haem 2011

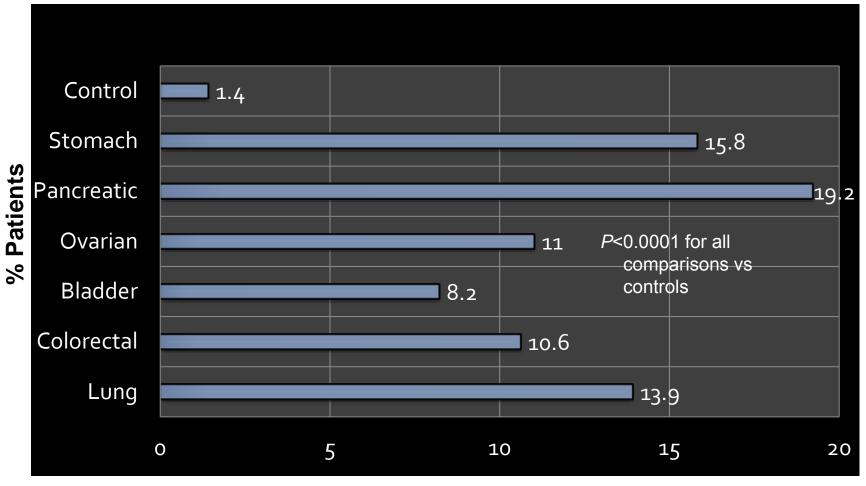
Why You Should Care: Costs

- Cancer patients with VTE had 3 times
 - increase in all-cause hospitalizations (mean 1.38 versus 0.55 per patient)
 - days in hospital (10.19 versus 3.37) (all P < 0.0001).
- Cancer patients with VTE incurred
 - higher overall all-cause inpatient costs (mean \$21,299 versus \$7459 per patient),
 - outpatient costs (\$53,660 versus \$34,232 per patient), and
 - total health care costs (\$74,959 versus \$ 41,691 per patient) (all P < 0.0001).
- MeanVTE-related costs : \$9247 / patient / year
- Adjusted mean incremental all-cause costs of VTE : \$30,538 /patient

Why You Should Care: Costs

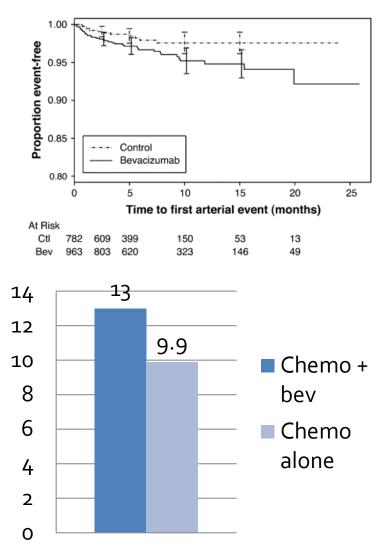

Khorana et al, Clin Econ Outcomes Res; 2013

Why You Should Care: Prevalence, Consequences, Costs


Predicting VTE in Cancer

Preventing VTE in Cancer

Risk Factors



Risk of VTE by Primary Site

Khorana AA et al, Cancer 2012

Risk with Bevacizumab

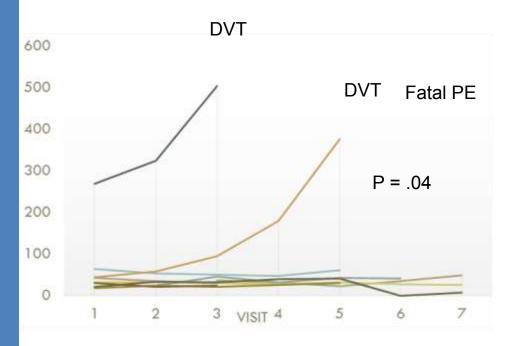
- 2-fold increased risk of arterial events¹
- Possible increased risk of VTE [RR=1.29 (95% Cl, 1.03-1.63)]²
- Not significant if adjusted for exposure time [RR 1.10 (95% Cl, 0.89-1.36)]³
- Not seen in a newer pooled analysis (OR 1.14; 95% CI, 0.96 to 1.35; P = .13)⁴

¹Scappaticci et al *JNCI* 2007;99(16):1232-9; ² Nalluri SR, et al. *JAMA*. 2008;300:2277-2285; ³Chu & Wu *JAMA*. 2009;301(14):1434-1436; ⁴Hurwitz et al *JCO* 29(13):1757-6

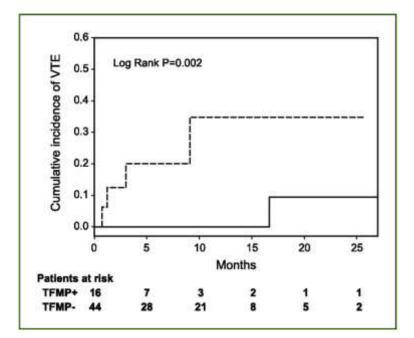
Risk with Other Anti-Angiogenic Agents

- •Sunitinib and sorafenib are associated with risk of arterial events [RR 3.03 (95% Cl, 1.25 to 7.37; P=.015)]¹
- •VEGFR-TKIs (pazopanib, sunitinib, sorafenib and vandetanib) are not associated with VTE(RR=0.912, 95%CI: 0.617-1.348, p = 0.643)²
- •Risk of VTE with thalidomide- and lenalidomidebased regimens is well-known³
 - 1.Choueiri et al *JCO* 2010; 28:2280-2285
 - 2. Qi, et al. Int J Ca. 2013; 132(12):2967-7
 - 3. Carrier et al J Thromb Haemost. 20119(4):653-63

Risk with Other Targeted Therapies

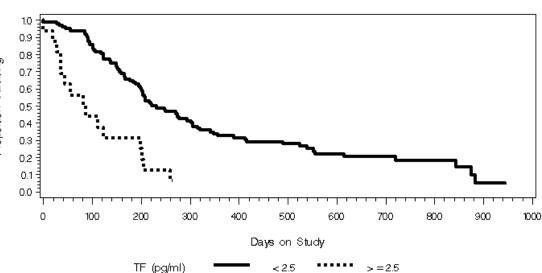

•Anti-EGFR agents are associated with risk of VTE

- RR 1.32 (95% Cl 1.07–1.63; *P* = 0.01)
- Risk primarily with antibodies (RR 1.34; P = 0.01) rather than oral TKIs (RR 1.16; P = 0.65)


Biomarkers

- Leukocyte count
- Platelet count
- Hemoglobin
- Tissue factor
- D-dimer
- Factor VIII

TF and VTE



Systemic TF by ELISA¹

Systemic TF-MPs by flow cytometry²

TF In Pancreatic & biliary Cancers

Median Survival in 117 pts with TF MP-PCA >2.5 and </=2.5pg/ml.

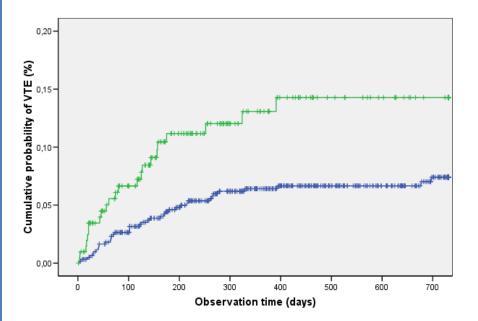
- Elevated TF was significantly associated with TE in a logistic regression analysis, (OR = 1.22, p = 0.04)
- Elevated TF was also associated with overall survival (HR = 1.05, p = 0.01)
- Median survival was <u>98.5</u> <u>days</u> vs.<u>231 days</u> for high vs low TF (p< 0.0001)
- Correlated with D-dimer and leukocyte count

Proportion Surviving

TF and VTE: Not So Fast

Journal of Thromboris and Haemostasis, 10: 1363-1370

DOE 10.1111 5-1538-7836.2012.04754.x


ORIGINAL ARTICLE

Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients

```
J. THALER, *†<sup>1</sup> C. AY, *†<sup>1</sup> N. MACKMAN, ‡ R. M. BERTINA, § A. KAIDER, ¶ C. MAROSI, **† N. S. KEY, ‡
D. A. BARCEL, ‡ W. SCHEITHAUER, **† G. KORNEK, **† C. ZIELINSKI**† and I. PABINGER*†
```

- •N=348
- •MP-TF activity was *not* associated with future VTE
- •MP-TF activity was associated with mortality in pancreatic cancer
- •MP-TF activity correlated with D-dimer in pancreatic cancer

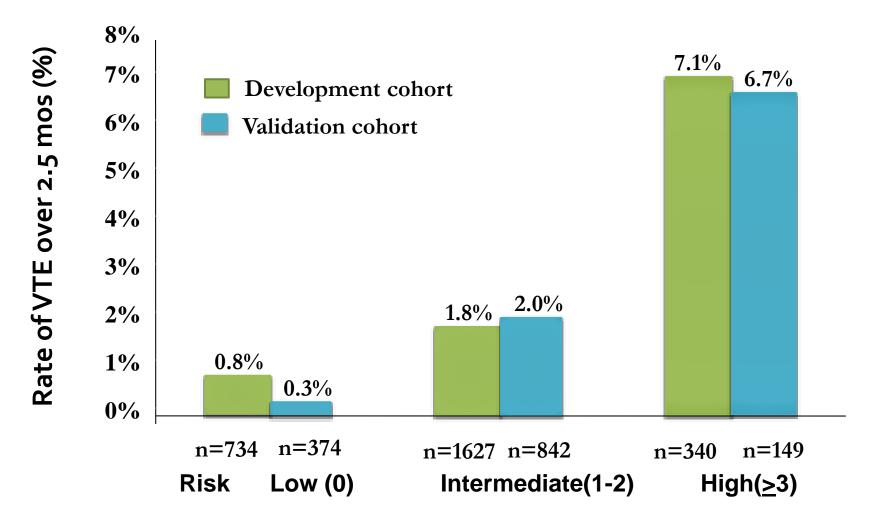
D-dimer and VTE

Elevated D-dimer (>75th percentile, 1.44µg/mL); **HR 2.2** (95% CI: 1.3 - 3.6), p=0.003

- No consensus on cut-off levels
- Widely available
- Potential to discriminate intermediaterisk patients
- Poor person's TF?

Risk Assessment ASCO 2013 Guideline Update

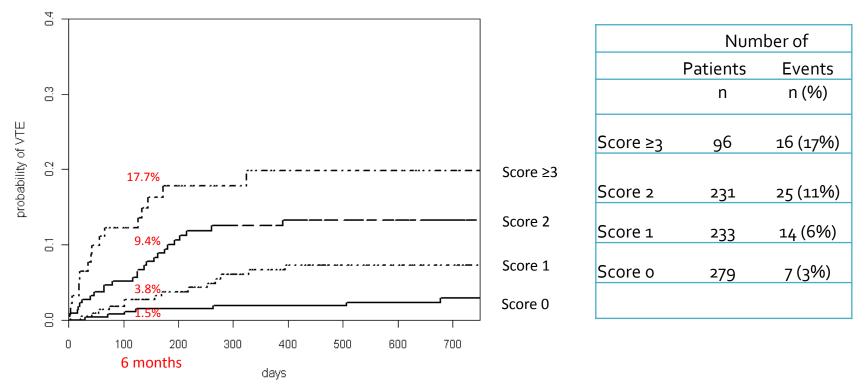
"Individual risk factors, including biomarkers or cancer site, do not reliably identify cancer patients at high risk for VTE"


Lyman GH, et al. J Clin Onc 2013

Risk Score

Patient Characteristic	Score
Site of Cancer	
Very high risk (stomach, pancreas)	2
High risk (lung, lymphoma, gynecologic, GU excluding prostate)	1
Platelet count > 350,000/mm ³	1
Hb < 10g/dL or use of ESA	1
Leukocyte count > 11,000/mm ³	1
BMI <u>> 35 kg/m²</u>	1

Khorana AA et al. Blood 2008


Risk Model Validation

Khorana AA et al. Blood 2008

Vienna CATS validation

- Full data available in 839 patients
- Median observation time/follow-up: 643 days

Ay et al Blood 2011

External Validation of Risk Score

Variable	Odds Ratio	95% CI	Adjusted P
Sex			.15
Male	1		
Female	1.31	0.91 to 1.88	
Age (per 10-year increase)	1.19	1.02 to 1.39	.03
Race/ethnicity			.51
White	1		
Asian	0.87	0.41 to 1.85	
African American	1.43	0.74 to 2.76	
KPS (per 10-unit increase)	0.92	0.86 to 0.98	.02
Central venous catheter/pacemaker	1.61	1.10 to 2.36	.01
Stage			.57
Early	1		
Locally advanced	0.84	0.41 to 1.72	
Metastatic	1.03	0.50 to 2.13	
Khorana risk group			.04
Low	1		
Intermediate	1.33	0.81 to 2.16	
High	2.06	1.16 to 3.65	

Table 4. Venous thromboembolism according to age, time from first tumor diagnosis, Khorana score and the use of antiangiogenic agents: multivariate analysis

Covariates	Chi-square	P-value	HR (95% CI)			
Age	2.3749	0.1233	1.019 (0.995-1.044)			
Time from first tumor	2.1908	0.1388	0.921 (0.825-1.027)			
diagnosis (years)						
Khorana score						
High (≥3)	15.9257	< 0.0001	7.876 (2.858-21.704)			
Intermediate (1-2)	6.6582	0.0099	2.747 (1.275-5.919)			
Low (0)	_	_	1*			
Antiangiogenic with cytotoxic						
Yes	1.6730	0.1959	1.617 (0.781-3.352)			
No	_	_	1*			

*Reference class.

¹Moore et al, *J Clin Oncol* 2011 ²Mandala et al, *Ann Onc* 2012

Evaluation of Risk Score

N=10, 694

	·				
Study	Type, duration	Ν	Low-risk (score = 0)	Intermediate-risk (score = 1-2)	High-risk (score ≥3)
Khorana et al, 2008	Development cohort, 2.5 months	2701	0.8%	1.8%	7.1%
Khorana et al, 2008	Validation cohort, 2.5 months	1365	0.3%	2%	6.7%
Kearney et al, 2009	Retrospective, 2 years	112	5%	15.9%	41.4%
Price et al, 2010	Retrospective, pancreatic, NA	108	_ *	14%	27%
Ay et al, 2010	Prospective, 643 days	819	1.5%	9.6% (score= 2) 3.8% (score=1)	17.7%
Khorana et al, 2010	Prospective**, 3 months	30	_ ***	-	27%
Moore et al, 2011	Retrospective, cisplatin-based chemo only	932	13%	17.1%	28.2%
Mandala et al, 2012	Retrospective, phase I patients only, 2 months	1415	1.5%	4.8%	12.9%

NA=not available; *=pancreatic cancer patients assigned a score of 2 based on site of cancer and therefore no patients in the low-risk category; **included 4-weekly screening ultrasonography; ***enrolled only high-risk patients

Risk Assessment: The Present ASCO 2013 New Recommendation

Q6. VTE Risk Assessment

6.1 Based on consensus, the Panel recommends that cancer patients should be assessed for VTE risk at the time of chemotherapy initiation and periodically thereafter. Individual risk factors, including biomarkers or cancer site, do not reliably identify cancer patients at high risk of VTE. In the outpatient setting, risk assessment can be conducted based on a validated risk assessment tool.

Lyman GH, et al. J Clin Onc 2013

Risk Assessment: The Future High coverage LC-MS/MS

- >50637 spectra
- 2145 unique peptides
- 149 proteins
- 116 protein groups
- Differential expression
 - 9 proteins p <0.05
 - 23 proteins p<0.10

Match criteria: 3 peptide minimum and 95% probability of match

Connolly et al, ISTH 2013

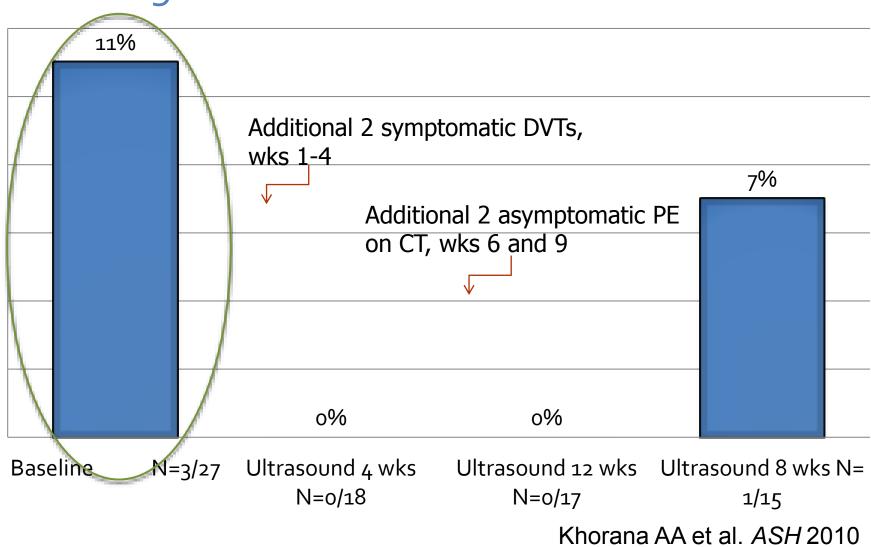
Applying Risk Assessment

Risk Assessment

Q6. VTE Risk Assessment

6.1 Based on consensus, the Panel recommends that cancer patients should be assessed for VTE risk at the time of chemotherapy initiation and periodically thereafter. Individual risk factors, including biomarkers or cancer site, do not reliably identify cancer patients at high risk of VTE. In the outpatient setting, risk assessment can be conducted based on a validated risk assessment tool.

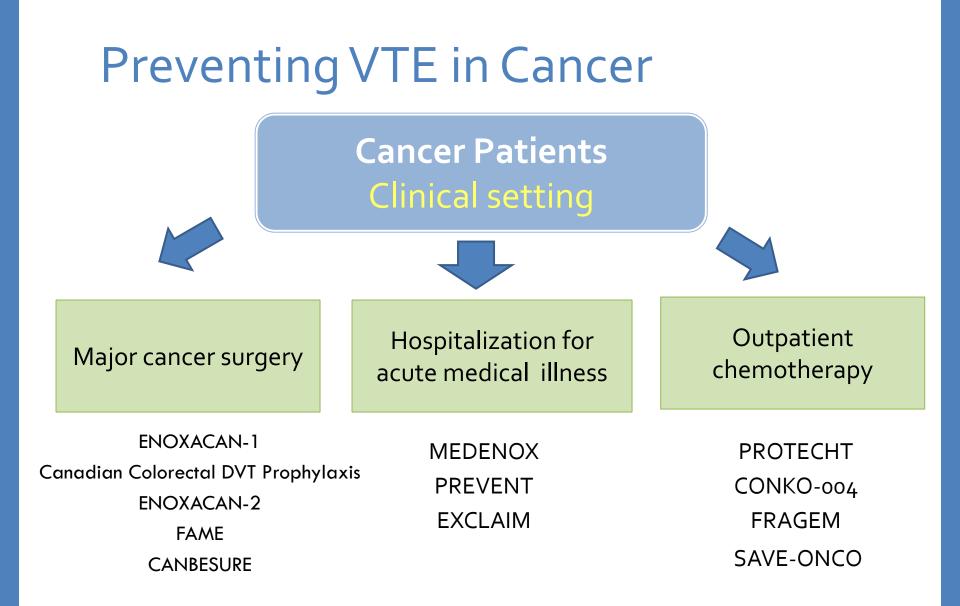
6.2 Based on consensus, the Panel recommends that oncologists educate patients regarding VTE, particularly in settings that increase risk such as major surgery, hospitalization, and while receiving systemic anti-neoplastic therapy.


ASCO CUIDELINES

Clinical Tools and Resources

15

www.asco.org/quidelines/ @American Society of Clinical Oncology 2013. All rights reserved.


Applying Risk Assessment Screening

Why You Should Care: Prevalence, Consequences, Costs

Predicting VTE in Cancer

Preventing VTE in Cancer

Despite Evidence, Prophylaxis Is Underused

ENDORSE¹

IMPROVE²

	Medical	Surgical		United States	Other Countries
No. of patients	37,356	30,827	No. of patients	3,410	11,746
At risk for VTE	42%	64%	VTE prophylaxis	1852 (54%)	5788 (49%)
Received prophylaxis (ACCP)	40%	59%	LMWH	476 (14%)	4657 (40%)
			UFH	717 (21%)	1014 (9%)

1. Cohen AT et al. *Lancet*. 2008;371:387-394. 2. Tapson VF et al. *Chest.* 2007;132:936-945.

Prophylaxis is underutilized in cancer patients

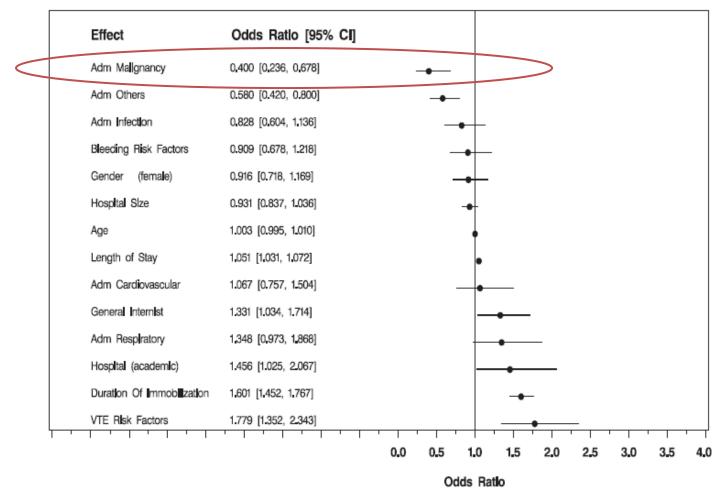
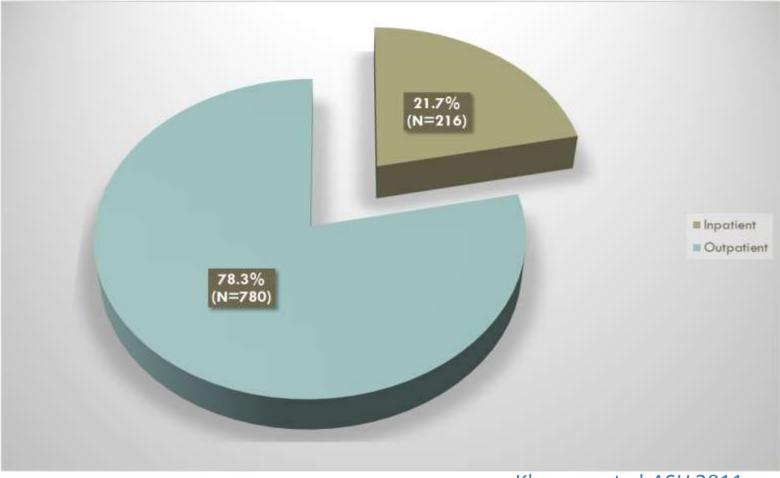
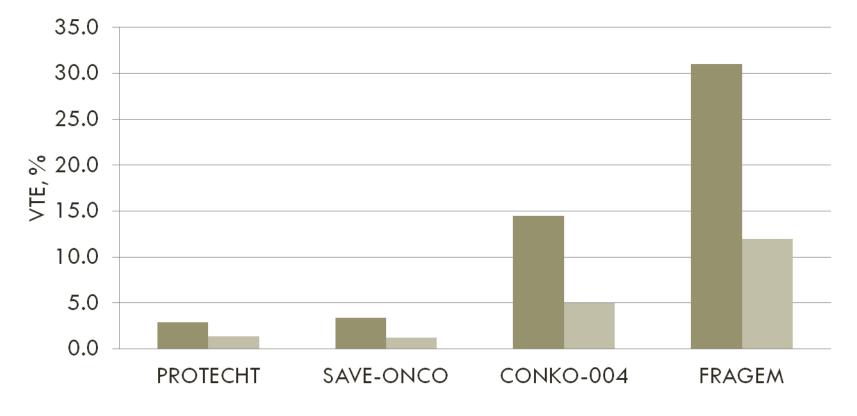



Figure 3 Results of logistic regression: predictors of use of any prophylaxis in study population.


Kahn SR et al Throm Res 2007

Order Entry Alerts Improve Compliance and Reduce VTE


Kucher N et al. N Engl J Med 2005;352:969-977.

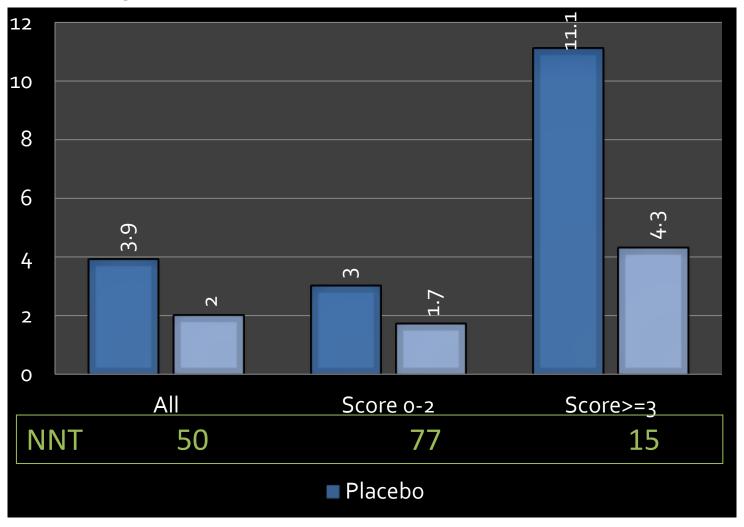
Prevention: CAT is an outpatient illness

Khorana et al ASH 2011

Rates of VTE in Recent Prophylaxis Studies

Agnelli et al *Lancet Onc* 2009 Riess et al ISTH 2009 Maraveyas et al *ESMO* 2009 Agnelli et al NEJM 2012

How To Approach Outpatient Prophylaxis?


"Specific" studies

- CONKO, FRAGEM, Myeloma
- Very high event rates
- Homogenous populations (pancreas, myeloma)
- <u>But</u>: smaller effect on public health burden

"General" studies

- PROTECHT, SAVE-ONCO
- Lower event rates
- Heterogenous populations (multiple sites, stages, chemo)
- <u>But</u>: potential greater effect on public health burden

Risk Assessment: The Future-Prophylaxis PROTECHT by Risk Score

Verso et al, Int Emerg Med 2012

Guideline recommendations

Patients	ASCO ¹	NCCN ²	ESMO ³
All cancer outpatients	Routine prophylaxis not recommended	Routine prophylaxis not recommended	Routine prophylaxis not recommended
Myeloma patients, receiving imid-based regimens	Aspirin or LMWH for low-risk and LMWH for high-risk patients is recommended	Aspirin for low-risk and LMWH or warfarin for high-risk patients is recommended	Consider LMWH, aspirin or adjusted-dose warfarin (INR ~ 1.5)
"High-risk" outpatients	Consider LMWH prophylaxis on a case- by-case basis in highly select outpatients with solid tumors on chemotherapy.	"Consider patient conversation about risks and benefits of prophylaxis in Khorana score ≥ 3 population"	Consider in high-risk ambulatory cancer patients. Predictive model may be used to identify patients clinically at high risk for VTE

1. Lyman GH, et al. J Clin Oncol. 2013

2. NCCN guidelines, 2013

3. Mandala M, et al. Ann Oncol. 2011;21:274-6.

Conclusions

The problem is bigger than we imagined

- "Unacceptably high" burden
- Incidental VTE is an emerging major clinical problem
- Association with cancer outcomes, including mortality

We have made progress

- Electronic alerts increase compliance and reduce clots
- Validation of the Risk Score by multiple groups represents a new era in collaboration and testing of predictive models
- Candidate biomarkers are being vetted in large-scale studies
- Multiple RCTs have addressed prevention of CAT in the outpatient setting

Conclusions

Outpatient prophylaxis is safe, feasible and effective

• Multiple RCTs have shown benefit, but with low event rates

Risk-adapted approaches to prophylaxis

- Identifying high-risk patients reduces NNT and optimizes risk-benefit ratio
- Slouching toward a consensus: targeted prophylaxis

The Future of CAT

Precision medicine

- "Big data" and pan-omics can be harnessed to precisely estimate the risk of primary and recurrent VTE
- Prevention and treatment can be individualized to patients based on risk of VTE and risk of bleeding